SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pauli S) "

Sökning: WFRF:(Pauli S)

  • Resultat 1-10 av 89
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Patel, Y., et al. (författare)
  • Virtual Ontogeny of Cortical Growth Preceding Mental Illness
  • 2022
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 92:4, s. 299-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Forstner, A. J., et al. (författare)
  • Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 4179-4190
  • Tidskriftsartikel (refereegranskat)abstract
    • Panic disorder (PD) has a lifetime prevalence of 2–4% and heritability estimates of 40%. The contributory genetic variants remain largely unknown, with few and inconsistent loci having been reported. The present report describes the largest genome-wide association study (GWAS) of PD to date comprising genome-wide genotype data of 2248 clinically well-characterized PD patients and 7992 ethnically matched controls. The samples originated from four European countries (Denmark, Estonia, Germany, and Sweden). Standard GWAS quality control procedures were conducted on each individual dataset, and imputation was performed using the 1000 Genomes Project reference panel. A meta-analysis was then performed using the Ricopili pipeline. No genome-wide significant locus was identified. Leave-one-out analyses generated highly significant polygenic risk scores (PRS) (explained variance of up to 2.6%). Linkage disequilibrium (LD) score regression analysis of the GWAS data showed that the estimated heritability for PD was 28.0–34.2%. After correction for multiple testing, a significant genetic correlation was found between PD and major depressive disorder, depressive symptoms, and neuroticism. A total of 255 single-nucleotide polymorphisms (SNPs) with p < 1 × 10−4 were followed up in an independent sample of 2408 PD patients and 228,470 controls from Denmark, Iceland and the Netherlands. In the combined analysis, SNP rs144783209 showed the strongest association with PD (pcomb = 3.10 × 10−7). Sign tests revealed a significant enrichment of SNPs with a discovery p-value of <0.0001 in the combined follow up cohort (p = 0.048). The present integrative analysis represents a major step towards the elucidation of the genetic susceptibility to PD. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
  •  
7.
  •  
8.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
9.
  • Elvsashagen, T, et al. (författare)
  • The genetic architecture of human brainstem structures and their involvement in common brain disorders
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4016-
  • Tidskriftsartikel (refereegranskat)abstract
    • Brainstem regions support vital bodily functions, yet their genetic architectures and involvement in common brain disorders remain understudied. Here, using imaging-genetics data from a discovery sample of 27,034 individuals, we identify 45 brainstem-associated genetic loci, including the first linked to midbrain, pons, and medulla oblongata volumes, and map them to 305 genes. In a replication sample of 7432 participants most of the loci show the same effect direction and are significant at a nominal threshold. We detect genetic overlap between brainstem volumes and eight psychiatric and neurological disorders. In additional clinical data from 5062 individuals with common brain disorders and 11,257 healthy controls, we observe differential volume alterations in schizophrenia, bipolar disorder, multiple sclerosis, mild cognitive impairment, dementia, and Parkinson’s disease, supporting the relevance of brainstem regions and their genetic architectures in common brain disorders.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 89
Typ av publikation
tidskriftsartikel (70)
konferensbidrag (16)
forskningsöversikt (1)
bokkapitel (1)
patent (1)
Typ av innehåll
refereegranskat (70)
övrigt vetenskapligt/konstnärligt (18)
populärvet., debatt m.m. (1)
Författare/redaktör
Halldin, C (20)
Farde, L (17)
Sedvall, G (12)
Karlsson, P (11)
Hall, H (10)
Maegdefessel, L (8)
visa fler...
van Hage, M (7)
Björck, M (7)
Franke, B (7)
Valenta, R (7)
Agartz, I (6)
Oosterlaan, J (6)
Hoekstra, PJ (6)
Andreassen, OA (5)
Jahanshad, N (5)
Schmaal, L (5)
Ehrlich, S (5)
Hoogman, M (5)
Van Rooij, D (5)
Mari, A (5)
Franke, Barbara (4)
Janssen, J. (4)
Westlye, LT (4)
Stein, DJ (4)
Agartz, Ingrid (4)
Alnæs, Dag (4)
Thomopoulos, Sophia ... (4)
Westlye, Lars T (4)
Thompson, Paul M (4)
Andreassen, Ole A (4)
Savic, I (4)
MCDONALD, C (4)
Brem, S (4)
Calvo, R (4)
Piras, F (4)
Spalletta, G (4)
Wang, Lei (4)
Dick, J. (4)
Wittfeld, K (4)
Crespo-Facorro, B (4)
Gruber, O (4)
Hartman, CA (4)
Jonsson, EG (4)
Paus, T (4)
Aghajani, Moji (4)
Cervenka, Simon (4)
Bertolino, Alessandr ... (4)
Pergola, Giulio (4)
Alnaes, D (4)
Pergola, G (4)
visa färre...
Lärosäte
Karolinska Institutet (60)
Göteborgs universitet (15)
Uppsala universitet (13)
Stockholms universitet (9)
Umeå universitet (7)
Sveriges Lantbruksuniversitet (4)
visa fler...
Linnéuniversitetet (2)
Kungliga Tekniska Högskolan (1)
Lunds universitet (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (89)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Medicin och hälsovetenskap (13)
Teknik (1)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy