SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pearce S. H.) srt2:(2005-2009)"

Sökning: WFRF:(Pearce S. H.) > (2005-2009)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  •  
3.
  • Atwood, W. B., et al. (författare)
  • THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION
  • 2009
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 697:2, s. 1071-1102
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy gamma-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (4) localize point sources to 0.3-2 arcmin, (5) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (6) measure the diffuse isotropic gamma-ray background up to TeV energies, and (7) explore the discovery space for dark matter.
  •  
4.
  • Abdo, A. A., et al. (författare)
  • FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR
  • 2009
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 696:2, s. 1084-1093
  • Tidskriftsartikel (refereegranskat)abstract
    • The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new gamma-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E >= 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of Gamma = 1.51(-0.04)(+0.05) with an exponential cutoff at E-c = 2.9 +/- 0.1 GeV. Spectral fits with generalized cutoffs of the form e(-(E/Ec)b) require b <= 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.
  •  
5.
  • Mizuno, T., et al. (författare)
  • A Monte Carlo method for calculating the energy response of plastic scintillators to polarized photons below 100 keV
  • 2009
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 600:3, s. 609-617
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy response of plastic scintillators (Eljen Technology EJ-204) to polarized soft gamma-ray photons below 100 keV has been studied, primarily for the balloon-borne polarimeter, PoGOLite. The response calculation includes quenching effects due to low-energy recoil electrons and the position dependence of the light collection efficiency in a 20 cm long scintillator rod. The broadening of the pulse-height spectrum, presumably caused by light transportation processes inside the scintillator, as well as the generation and multiplication of photoelectrons in the photomultiplier tube, were studied experimentally and have also been taken into account. A Monte Carlo simulation based on the Geant4 toolkit was used to model photon interactions in the scintillators. When using the polarized Compton/Rayleigh scattering processes previously corrected by the authors, scintillator spectra and angular distributions of scattered polarized photons could clearly be reproduced, in agreement with the results obtained at a synchrotron beam test conducted at the KEK Photon Factory. Our simulation successfully reproduces the modulation factor, defined as the ratio of the amplitude to the mean of the distribution of the azimuthal scattering angles, within similar to 5% (relative). Although primarily developed for the PoGOLite mission, the method presented here is also relevant for other missions aiming to measure polarization from astronomical objects using plastic scintillator scatterers. 
  •  
6.
  • Andersson, V., et al. (författare)
  • Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)
  • 2005
  • Ingår i: Proceedings of the 22nd Texas Symposium on Relativistic Astrophysics at Stanford. ; , s. 736-743
  • Konferensbidrag (refereegranskat)abstract
    • We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (30-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO is designed to detect 10 % polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter consisting of a fast plastic scintillator (the detection part), a slow plastic scintillator (the active collimator) and a BGO scintillator (the bottom anti-counter). PoGO consists of close-packed array of 217 hexagonal well-type phoswich counters and has a narrow field-of-view (~ 5 deg2) to reduce possible source confusion. A prototype instrument has been tested in the polarized soft gamma-ray beams at Advanced Photon Source (ANL) and at Photon Factory (KEK). On the results, the polarization dependence of EGS4 has been validated and that of Geant4 has been corrected.
  •  
7.
  • Arimoto, M., et al. (författare)
  • Performance assessment study of the balloon-borne astronomical soft gamma-ray polarimeter PoGOLite
  • 2007
  • Ingår i: Physica. E, Low-Dimensional systems and nanostructures. - : Elsevier BV. - 1386-9477 .- 1873-1759. ; 40:2, s. 438-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of polarization play a crucial role in the understanding of the dominant emission mechanism of astronomical sources. Polarized Gamma-ray Observer-Light version (PoGOLite) is a balloon-borne astronomical soft gamma-ray polarimeter at the 25-80 keV band. The PoGOLite detector consists of a hexagonal close-packed array of 217 Phoswich detector cells (PDCs) and side anti-coincidence shields (SASs) made of BGO crystals surrounding PDCs. Each PDC consists of a slow hollow scintillator, a fast scintillator and a BGO crystal that connects to a photomultiplier tube at the end. To examine the PoGOLite's capability and estimate the performance, we conducted experiments with the PDC using radioisotope 241Am. In addition, we compared this result with performance expected by Monte Carlo simulation with Geant4. As a result, we found that the actual PDC has the capability to detect a 100 m Crab source until 80 keV.
  •  
8.
  •  
9.
  • Kurita, K., et al. (författare)
  • Recent Development Status of PoGOLite
  • 2009
  • Ingår i: Astrophysics with All-Sky X-Ray Observations. ; , s. 386-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
10.
  • Pearce, Mark, et al. (författare)
  • PoGOLite : A balloon-borne soft gamma-ray polarimeter
  • 2007
  • Ingår i: Proceedings of the 30th International Cosmic Ray Conference, ICRC 2007. - : Universidad Nacional Autonoma de Mexico. ; , s. 479-482
  • Konferensbidrag (refereegranskat)abstract
    • Polarized gamma-rays are expected from a wide variety of sources including rotationpowered pulsars, accreting black holes and neutron stars, and jet-dominated active galaxies. Polarization measurements provide a powerful probe of the gamma-ray emission mechanism and the distribution of magnetic and radiation fields around the source. No measurements have been performed in the soft gamma-ray band where non-thermal processes are expected to produce high degrees of polarization. The PoGOLite experiment applies well-type phoswich detector technology to polarization measurements in the 25 - 80 keV energy range. The instrument uses Compton scattering and photoabsorption in an array of 217 phoswich detector cells made of plastic and BGO scintillators, and surrounded by active BGO shields. A prototype of the flight instrument has been tested with polarized gammarays and background generated with radioactive sources. The test results and computer simulations confirm that the instrument can detect 10% polarization of a 200 mCrab source in one 6 hour balloon observation. In flight, targets are constrained to within better than 5% of the field-of-view (~5 degrees squared) in order to maximize the effective detection area during observations. The pointing direction on the sky is determined by an attitude control system comprising star trackers, differential GPS receiver system, gyroscopes, accelerometers and magnetometers which provide correction signals to a reaction wheel and torque motor system. Additionally, the entire polarimeter assembly rotates around its viewing axis to minimize systematic bias during observations. Flights are foreseen to start in 2009- 2010 and will target northern sky sources including the Crab pulsar/nebula, Cygnus X-1, and Hercules X-1. These observations will provide valuable information about the pulsar emission mechanism, the geometry around the black hole, and photon transportation in the strongly magnetized neutron star surface, respectively. Future goals include a long duration balloon flight from the Esrange facility in Northern Sweden to Canada.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy