SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peiris Hiranya) srt2:(2018)"

Sökning: WFRF:(Peiris Hiranya) > (2018)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Braden, Jonathan, et al. (författare)
  • Towards the cold atom analog false vacuum
  • 2018
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :7
  • Tidskriftsartikel (refereegranskat)abstract
    • Analog condensed matter systems present an exciting opportunity to simulate early Universe models in table-top experiments. We consider a recent proposal for an analog condensed matter experiment to simulate the relativistic quantum decay of the false vacuum. In the proposed experiment, two ultra-cold condensates are coupled via a time-varying radio-frequency field. The relative phase of the two condensates in this system is approximately described by a relativistic scalar field with a potential possessing a series of false and true vacuum local minima. If the system is set up in a false vacuum, it would then decay to a true vacuum via quantum mechanical tunnelling. Should such an experiment be realized, it would be possible to answer a number of open questions regarding non-perturbative phenomena in quantum field theory and early Universe cosmology. In this paper, we illustrate a possible obstruction: the time-varying coupling that is invoked to create a false vacuum for the long-wavelength modes of the condensate leads to a destabilization of shorter wavelength modes within the system via parametric resonance. We focus on an idealized setup in which the two condensates have identical properties and identical background densities. Describing the system by the coupled Gross-Pitaevskii equations (GPE), we use the machinery of Floquet theory to perform a linear stability analysis, calculating the wavenumber associated with the first instability band for a variety of experimental parameters. However, we demonstrate that, by tuning the frequency of the time-varying coupling, it may be possible to push the first instability band outside the validity of the GPE, where dissipative effects are expected to damp any instabilities. This provides a viable range of experimental parameters to perform analog experiments of false vacuum decay.
  •  
2.
  • Lochner, Michelle, et al. (författare)
  • Optimizing the LSST Observing Strategy for Dark Energy Science : DESC Recommendations for the Wide-Fast-Deep Survey
  • 2018
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Cosmology is one of the four science pillars of LSST, which promises to be transformative for our understanding of dark energy and dark matter. The LSST Dark Energy Science Collaboration (DESC) has been tasked with deriving constraints on cosmological parameters from LSST data. Each of the cosmological probes for LSST is heavily impacted by the choice of observing strategy. This white paper is written by the LSST DESC Observing Strategy Task Force (OSTF), which represents the entire collaboration, and aims to make recommendations on observing strategy that will benefit all cosmological analyses with LSST. It is accompanied by the DESC DDF (Deep Drilling Fields) white paper (Scolnic et al.). We use a variety of metrics to understand the effects of the observing strategy on measurements of weak lensing, large-scale structure, clusters, photometric redshifts, supernovae, strong lensing and kilonovae. In order to reduce systematic uncertainties, we conclude that the current baseline observing strategy needs to be significantly modified to result in the best possible cosmological constraints. We provide some key recommendations: moving the WFD (Wide-Fast-Deep) footprint to avoid regions of high extinction, taking visit pairs in different filters, changing the 2x15s snaps to a single exposure to improve efficiency, focusing on strategies that reduce long gaps (>15 days) between observations, and prioritizing spatial uniformity at several intervals during the 10-year survey.
  •  
3.
  • Lockhart, K. E., et al. (författare)
  • A Slowly Precessing Disk in the Nucleus of M31 as the Feeding Mechanism for a Central Starburst
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 854:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a kinematic study of the nuclear stellar disk in M31 at infrared wavelengths using high spatial resolution integral field spectroscopy. The spatial resolution achieved, FWHM = 0.'' 12 (0.45 pc at the distance of M31), has only previously been equaled in spectroscopic studies by space-based long-slit observations. Using adaptive optics-corrected integral field spectroscopy from the OSIRIS instrument at the W. M. Keck Observatory, we map the line-of-sight kinematics over the entire old stellar eccentric disk orbiting the supermassive black hole (SMBH) at a distance of r<4 pc. The peak velocity dispersion is 381 +/- 55 km/s(-1), offset by 0.'' 13 +/- 0.'' 03 from the SMBH, consistent with previous high-resolution long-slit observations. There is a lack of near-infrared (NIR) emission at the position of the SMBH and young nuclear cluster, suggesting a spatial separation between the young and old stellar populations within the nucleus. We compare the observed kinematics with dynamical models from Peiris & Tremaine (2003). The best-fit disk orientation to the NIR flux is [theta(l), theta(i), theta(a)] = [-33 +/- 4 degrees, 44 +/- 2 degrees, -15 +/- 15 degrees}], which is tilted with respect to both the larger-scale galactic disk and the best-fit orientation derived from optical observations. The precession rate of the old disk is Omega(P) = 0.0 +/- 3.9 km/s(-1)pc(-1), lower than the majority of previous observations. This slow precession rate suggests that stellar winds from the disk will collide and shock, driving rapid gas inflows and fueling an episodic central starburst as suggested in Chang et al.
  •  
4.
  • Lucie-Smith, Luisa, et al. (författare)
  • Machine learning cosmological structure formation
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 479:3, s. 3405-3414
  • Tidskriftsartikel (refereegranskat)abstract
    • We train a machine learning algorithm to learn cosmological structure formation from N-body simulations. The algorithm infers the relationship between the initial conditions and the final dark matter haloes, without the need to introduce approximate halo collapse models. We gain insights into the physics driving halo formation by evaluating the predictive performance of the algorithm when provided with different types of information about the local environment around dark matter particles. The algorithm learns to predict whether or not dark matter particles will end up in haloes of a given mass range, based on spherical overdensities. We show that the resulting predictions match those of spherical collapse approximations such as extended Press-Schechter theory. Additional information on the shape of the local gravitational potential is not able to improve halo collapse predictions; the linear density field contains sufficient information for the algorithm to also reproduce ellipsoidal collapse predictions based on the Sheth-Tormen model. We investigate the algorithm's performance in terms of halo mass and radial position and perform blind analyses on independent initial conditions realizations to demonstrate the generality of our results.
  •  
5.
  • Rogers, Keir K., et al. (författare)
  • Correlations in the three-dimensional Lyman-alpha forest contaminated by high column density absorbers
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 476:3, s. 3716-3728
  • Tidskriftsartikel (refereegranskat)abstract
    • Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 x 10(17) atoms cm(-2)), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring threedimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple 'linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (vertical bar k vertical bar < 1 h Mpc(-1)). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. vertical bar k vertical bar > 0.4 h Mpc(-1) for small damped Lyman-alpha absorbers; HCD absorbers with N(H-I) similar to 10(21) atoms cm(-2)). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.
  •  
6.
  • Rogers, Keir K., et al. (författare)
  • Simulating the effect of high column density absorbers on the one-dimensional Lyman alpha forest flux power spectrum
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 474:3, s. 3032-3042
  • Tidskriftsartikel (refereegranskat)abstract
    • We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman alpha forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with HI column densities N(H I) > 1.6 x 10(17) atoms cm(-2)) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman alpha forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman alpha forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.
  •  
7.
  • Traykova, Dina, et al. (författare)
  • Accretion of a symmetry-breaking scalar field by a Schwarzschild black hole
  • 2018
  • Ingår i: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962. ; 376:2114
  • Tidskriftsartikel (refereegranskat)abstract
    • We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry-breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory. This article is part of the Theo Murphy meeting issue 'Higgs Cosmology'.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy