SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pell JP) srt2:(2015-2019)"

Sökning: WFRF:(Pell JP) > (2015-2019)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Strawbridge, RJ, et al. (författare)
  • Genetics of self-reported risk-taking behaviour, trans-ethnic consistency and relevance to brain gene expression
  • 2018
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 8:1, s. 178-
  • Tidskriftsartikel (refereegranskat)abstract
    • Risk-taking behaviour is an important component of several psychiatric disorders, including attention-deficit hyperactivity disorder, schizophrenia and bipolar disorder. Previously, two genetic loci have been associated with self-reported risk taking and significant genetic overlap with psychiatric disorders was identified within a subsample of UK Biobank. Using the white British participants of the full UK Biobank cohort (n = 83,677 risk takers versus 244,662 controls) for our primary analysis, we conducted a genome-wide association study of self-reported risk-taking behaviour. In secondary analyses, we assessed sex-specific effects, trans-ethnic heterogeneity and genetic overlap with psychiatric traits. We also investigated the impact of risk-taking-associated SNPs on both gene expression and structural brain imaging. We identified 10 independent loci for risk-taking behaviour, of which eight were novel and two replicated previous findings. In addition, we found two further sex-specific risk-taking loci. There were strong positive genetic correlations between risk-taking and attention-deficit hyperactivity disorder, bipolar disorder and schizophrenia. Index genetic variants demonstrated effects generally consistent with the discovery analysis in individuals of non-British White, South Asian, African-Caribbean or mixed ethnicity. Polygenic risk scores comprising alleles associated with increased risk taking were associated with lower white matter integrity. Genotype-specific expression pattern analyses highlighted DPYSL5, CGREF1 and C15orf59 as plausible candidate genes. Overall, our findings substantially advance our understanding of the biology of risk-taking behaviour, including the possibility of sex-specific contributions, and reveal consistency across ethnicities. We further highlight several putative novel candidate genes, which may mediate these genetic effects.
  •  
7.
  • Strawbridge, RJ, et al. (författare)
  • Genome-wide analysis of self-reported risk-taking behaviour and cross-disorder genetic correlations in the UK Biobank cohort
  • 2018
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 8:1, s. 39-
  • Tidskriftsartikel (refereegranskat)abstract
    • Risk-taking behaviour is a key component of several psychiatric disorders and could influence lifestyle choices such as smoking, alcohol use, and diet. As a phenotype, risk-taking behaviour therefore fits within a Research Domain Criteria (RDoC) approach, whereby identifying genetic determinants of this trait has the potential to improve our understanding across different psychiatric disorders. Here we report a genome-wide association study in 116,255 UK Biobank participants who responded yes/no to the question “Would you consider yourself a risk taker?” Risk takers (compared with controls) were more likely to be men, smokers, and have a history of psychiatric disorder. Genetic loci associated with risk-taking behaviour were identified on chromosomes 3 (rs13084531) and 6 (rs9379971). The effects of both lead SNPs were comparable between men and women. The chromosome 3 locus highlights CADM2, previously implicated in cognitive and executive functions, but the chromosome 6 locus is challenging to interpret due to the complexity of the HLA region. Risk-taking behaviour shared significant genetic risk with schizophrenia, bipolar disorder, attention-deficit hyperactivity disorder, and post-traumatic stress disorder, as well as with smoking and total obesity. Despite being based on only a single question, this study furthers our understanding of the biology of risk-taking behaviour, a trait that has a major impact on a range of common physical and mental health disorders.
  •  
8.
  •  
9.
  • Ward, J, et al. (författare)
  • Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia
  • 2017
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 7:11, s. 1264-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mood instability is a core clinical feature of affective and psychotic disorders. In keeping with the Research Domain Criteria approach, it may be a useful construct for identifying biology that cuts across psychiatric categories. We aimed to investigate the biological validity of a simple measure of mood instability and evaluate its genetic relationship with several psychiatric disorders, including major depressive disorder (MDD), bipolar disorder (BD), schizophrenia, attention deficit hyperactivity disorder (ADHD), anxiety disorder and post-traumatic stress disorder (PTSD). We conducted a genome-wide association study (GWAS) of mood instability in 53,525 cases and 60,443 controls from UK Biobank, identifying four independently associated loci (on chromosomes 8, 9, 14 and 18), and a common single-nucleotide polymorphism (SNP)-based heritability estimate of ~8%. We found a strong genetic correlation between mood instability and MDD (rg = 0.60, SE = 0.07, p = 8.95 × 10−17) and a small but significant genetic correlation with both schizophrenia (rg = 0.11, SE = 0.04, p = 0.01) and anxiety disorders (rg = 0.28, SE = 0.14, p = 0.04), although no genetic correlation with BD, ADHD or PTSD was observed. Several genes at the associated loci may have a role in mood instability, including the DCC netrin 1 receptor (DCC) gene, eukaryotic translation initiation factor 2B subunit beta (eIF2B2), placental growth factor (PGF) and protein tyrosine phosphatase, receptor type D (PTPRD). Strengths of this study include the very large sample size, but our measure of mood instability may be limited by the use of a single question. Overall, this work suggests a polygenic basis for mood instability. This simple measure can be obtained in very large samples; our findings suggest that doing so may offer the opportunity to illuminate the fundamental biology of mood regulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy