SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pellegrini Vittorio) srt2:(2020)"

Sökning: WFRF:(Pellegrini Vittorio) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bianca, Gabriele, et al. (författare)
  • Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 12:43, s. 48598-48613
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoelectrochemical (PEC) systems represent powerful tools to convert electromagnetic radiation into chemical fuels and electricity. In this context, two-dimensional (2D) materials are attracting enormous interest as potential advanced photo(electro)catalysts and, recently, 2D group-IVA metal monochalcogenides have been theoretically predicted to be water splitting photocatalysts. In this work, we use density functional theory calculations to theoretically investigate the photocatalytic activity of single-/few-layer GeSe nanoflakes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in pH conditions ranging from 0 to 14. Our simulations show that GeSe nanoflakes with different thickness can be mixed in the form of nanoporous films to act as nanoscale tandem systems, in which the flakes, depending on their thickness, can operate as HER- and/or OER photocatalysts. On the basis of theoretical predictions, we report the first experimental characterization of the photo(electro)catalytic activity of single-/few-layer GeSe flakes in different aqueous media, ranging from acidic to alkaline solutions: 0.5 M H2SO4 (pH 0.3), 1 M KCl (pH 6.5), and 1 M KOH (pH 14). The films of the GeSe nanoflakes are fabricated by spray coating GeSe nanoflakes dispersion in 2-propanol obtained through liquid-phase exfoliation of synthesized orthorhombic (Pnma) GeSe bulk crystals. The PEC properties of the GeSe nanoflakes are used to design PEC-type photodetectors, reaching a responsivity of up to 0.32 AW(-1) (external quantum efficiency of 86.3%) under 455 nm excitation wavelength in acidic electrolyte. The obtained performances are superior to those of several self-powered and low-voltage solution-processed photodetectors, approaching that of self-powered commercial UV-Vis photodetectors. The obtained results inspire the use of 2D GeSe in proof-of-concept water photoelectrolysis cells.
  •  
2.
  • Celeste, Arcangelo, et al. (författare)
  • Enhancement of Functional Properties of Liquid Electrolytes for Lithium-Ion Batteries by Addition of Pyrrolidinium-Based Ionic Liquids with Long Alkyl-Chains
  • 2020
  • Ingår i: Batteries and Supercaps. - : Wiley. - 2566-6223. ; 3:10, s. 1059-1068
  • Tidskriftsartikel (refereegranskat)abstract
    • Three ionic liquid belonging to the N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imides (Pyr(1),nTFSI with n=4,5,8) have been added as co-solvent to two commonly used electrolytes for Li-ion cells: (a) 1 M lithium hexafluorophosphate (LiPF6) in a mixture of ethylene carbonate (EC) and linear like dimethyl carbonate (DMC) in 1 : 1 v/v and (b) 1 M lithium bis-(trifluoromethanesulfonyl)imide (LiTFSI) in EC : DMC 1 : 1 v/v. These electrolyte formulations (classified as P and T series containing LiPF6 or LiTFSI salts, respectively) have been analyzed by comparing ionic conductivities, transport numbers, viscosities, electrochemical stability as well as vibrational properties. In the case of the Pyr(1,5)TFSI and Pyr(1,8)TFSI blended formulations, this is the first ever reported detailed study of their functional properties in Li-ion cells electrolytes. Overall, P-electrolytes demonstrate enhanced properties compared to the T-ones. Among the various P electrolytes those containing Pyr(1,4)TFSI and Pyr(1,5)TFSI limit the accumulation of irreversible capacity upon cycling with satisfactory performance in lithium cells.
  •  
3.
  • Palei, Milan, et al. (författare)
  • Photoluminescence enhancement and high accuracy patterning of lead halide perovskite single crystals by MeV ion beam irradiation
  • 2020
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7526 .- 2050-7534. ; 8:29, s. 9923-9930
  • Tidskriftsartikel (refereegranskat)abstract
    • Focused ion beam (FIB) has recently been used to tune the optical properties of lead halide perovskites (LHPs), opening an interesting avenue for applications in optoelectronic devices. However, it has remained an open question to date whether FIB can be used to locally enhance the photoluminescence (PL) of LHPs. In this work we irradiate MAPbBr(3)(MA = methylammonium) single crystals with a high energy micron-sized ion probe of different ionic masses (3 MeV He+, 12.5 MeV Br5+, and 20 MeV I7+) and study the PL as a function of the damage induced by the ion beam. We find that at low damage levels the PL is enhanced about six times with respect to the pristine material, while increasing the damage level produces a progressive PL decrease, and, above a threshold, the PL is finally quenched below the value of the pristine crystal. We attribute this behavior to the interaction of free carriers with irradiation induced surface defects: at low damage levels the migration of carriers toward the bulk is inhibitedviatrapping-detrapping events at surface defects, allowing their radiative recombination near the surface; at higher damage, though, the probability for non-radiative recombination increases and gradually becomes dominant. We thus present a method to locally increase the PL of bulk LHP, which could be applied in a wide range of fields, such as highly sensitive ion beam detection or future optoelectronic device design.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy