SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pemberton Per 1976 ) srt2:(2012)"

Sökning: WFRF:(Pemberton Per 1976 ) > (2012)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jahn, A., et al. (författare)
  • Arctic Ocean freshwater : How robust are model simulations?
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. C00D16-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust. Citation: Jahn, A., et al. (2012), Arctic Ocean freshwater: How robust are model simulations?, J. Geophys. Res., 117, C00D16, doi: 10.1029/2012JC007907.
  •  
2.
  • Mårtensson, Sebastian, et al. (författare)
  • Ridged sea ice characteristics in the arctic from a coupled multicategory sea ice model
  • 2012
  • Ingår i: Journal of Geophysical Research: Oceans. - 2169-9291. ; 117:C8
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, a multicategory sea ice model with explicit ice classes for ridged and rafted ice was used to examine the evolution of deformed ice during the period 1980-2002. The results show that (1) ridged ice comprises roughly 45-60% of Arctic sea ice volume and 25-45% of the sea ice area, (2) most of the perennial ice consists of ridged ice, and (3) ridged ice exhibits a small seasonal variability. Our results also show an increase in mean ridged ice thickness of 4-6 cm yr(-1) during the summer in an area north of the Canadian Archipelago and a corresponding decrease in the East Siberian Sea and Nansen Basin. At the same time, Arctic sea ice age has been observed to decline and ice drift speed to increase during the simulation period. We connect these findings with a modeled regional increase in the production rate of ridged ice. Comparison of the multicategory model and a two category reference model shows a substantially increased ice production rate due to a more frequent occurrence of leads, resulting in an ice thickness increase of up to 0.8 m. Differences in ice physics between the multicategory and reference models also affect the freshwater content. The sum of liquid and solid freshwater content in the entire Arctic Ocean is about 10% lower and net precipitation (P-E) is about 7% lower as compared to the reference model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy