SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Nils Krister) srt2:(2010-2014)"

Sökning: WFRF:(Persson Nils Krister) > (2010-2014)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali, Majid, et al. (författare)
  • Optimization of oCVD Process for the Production of Conductive Fibers
  • 2011
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Electro active textile fibers are key components in smart and interactive textile applications. In our previous study, we produced poly(3,4-ethylenedioxythiophene) (PEDOT) coat edviscose fibers by using oxidative chemical vapordeposition (OCVD) technique. We tried FeCl3 as oxidant and found optimum reaction conditions at which better electrical as well as mechanical properties of conductive fibers could be achieved.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Bashir, Tariq, et al. (författare)
  • Electrical Resistance Measurement Methods and Electrical Characterization of Poly(3,4-ethylenedioxythiophene)- Coated Conductive Fibers
  • 2012
  • Ingår i: Journal of Applied Polymer Science. - : John Wiley & Sons, Inc.. - 0021-8995 .- 1097-4628. ; 124:4, s. 2954-2961
  • Tidskriftsartikel (refereegranskat)abstract
    • Textile fibers and yarns of high conductivity, and their integration into wearable textiles for different electronic applications, have become an important research field for many research groups throughout the world. We have produced novel electrically conductive textile yarns by vapor-phase polymerization (VPP) of a conjugated polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), on the surface of commercially available textile yarns (viscose). In this article, we have presented a novel setup for electrical resistance measurements, which can be used not only for fibrous structures but also for woven structures of specific dimensions. We have reported a two-point resistance- measuring method using an already manufactured setup and also a comparison with the conventionally used method (so-called crocodile clip method). We found that the electrical properties of PEDOT-coated viscose fibers strongly depend on the concentration of oxidant (FeCl3)and the doping (oxidation) process of PEDOT. To evaluate the results, we used mass specific resistance values of PEDOT-coated viscose yarns instead of normal surface resistance values. The voltage–current (V–I) characteristics support the ohmic behavior of coated fibers to some extent. Monitoring of the charging effect of the flow of current through conductive fibers for prolonged periods of time showed that conductivity remains constant. The change in electrical resistance values with increase in the length of coated fibers was also reported. The resistance measuring setup employed could also be used for continuous measurement of resistance in the production of conductive fibers, as well as for four-point resistance measurement.
  •  
6.
  •  
7.
  • Bashir, Tariq, et al. (författare)
  • Electroactive textile fibers produced by coating commercially available textile fibers with conductive polymer
  • 2010
  • Ingår i: Nordic Textile Journal. - : Centrum för textilforskning. - 1404-2487.
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of electrically conductive fibers, exhibiting higher mechanical properties and their integration in smart and interactive textiles, has become a prominent research area throughout the world. Smart textiles have increasingly been used in medical, sports and military applications. In other words, we can say, smart textiles are going to shape our future. This paper describes our ongoing research in which, we have produced relatively highly conductive fibers by coating commercially available textile fibers (viscose, polyester) with conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT). A novel coating technique, called oxidative chemical vapor deposition (OCVD), was used for this purpose. Different testing and characterization techniques were then employed to investigate electrical, mechanical, thermal, and surface properties of PEDOT coated fibers. The surface modification of electrically conductive textile fibers with silicone resins is also discussed and an analysis is given to show how silicone coating enhances the mechanical as well as hydrophobic properties of coated textile fibers. The obtained PEDOT coated textile fibers showed good electrical as well as mechanical properties. From this research, we can easily select the most appropriate type of fiber according to the specific electronic application, exhibiting the required end-used properties. These conductive fibers could also be used as substrates for heat generation devices, such as solar cells, and organic fuel cells.
  •  
8.
  • Bashir, Tariq, et al. (författare)
  • FUNCTIONAL TEXTILES : Micro-porous Conductive Membranes for Bio-fuel Cell and Anti-static Air Filter Applications
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • Conductive membranes are the highly demanding materials in the field of bio-fuel generation, bio-electrodes, sensors and anti-static air filter systems. The conductive membranes can effectively be utilized for above mentioned applications if they have better conductivity, lower weight, flexibility and cost effectiveness. Textile materials are extremely versatile in nature because their synergic combinations with other functional materials could be used for a wide range of applications, such as medical, sports, defence, energy generation and chemical industry. The non-woven micro-porous textile substrates can effectively be functionalized by coating them with conjugated polymers, such as PEDOT and polypyrrole. Coating with conjugated polymers not only gives better conductivity values but also maintain the lower molecular weight of the substrate material. In our research, we have prepared micro-porous conductive membranes by coating cellulosic non-woven fabrics with conductive polymer PEDOT. For coating purpose, we utilized most effective deposition technique, which is called chemical vapour deposition (CVD) process. The deposition of PEDOT by CVD process showed advantages over other conventionally used methods, such as the micro-pores were not blocked even after PEDOT deposition. The electrical characterization on produced conductive membranes was performed by using Kiethely 6000 picoammeter. The surface morphology was examined by scanning electron microscopy and structural properties were determined by ATR-FTIR analysis. In order to see the behaviour of these conductive membranes, electrochemical impedance scanning (EIS) was performed in different electrolyte solutions. The produced conductive membranes might have potential to be utilized as active electrode in bio-fuel cells and also can be used in anti-static air filter systems.
  •  
9.
  • Bashir, Tariq, et al. (författare)
  • Functionalization of Textile Materials by Coating with Conjugated Polymers
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • During the last decade, smart textiles have attracted an enormous attention of researchers and found extraordinary applications in biomedical, sports, defense, energy, and fashion industry. These textiles are able to accept the physical signals from external stimuli and then generate a reaction in the form of thermal, electrical, chemical and magnetic signals. They should be in the form of functionalized fabric or electro-active fibers. A numerous techniques for the production of electrically conductive fibers have already been developed. In this study, we have prepared relatively highly conductive fibers with better mechanical properties. For this purpose, we have functionalized the commercially available textile fibers by coating with intrinsically conductive polymer (ICP), poly(3,4-ethylenedioxythiophene) (PEDOT). An efficient coating technique, so called oxidative chemical vapor deposition (CVD) was utilized for making uniform, thin and highly conductive polymer layers on the surface of textile fibers. For our initial experiments, we used viscose and polyester fibers as substrate materials. After performing a series of experiments, we have optimized a number of reaction parameters at which good electro-mechanical properties of conductive fibers can be achieved. At specific reaction conditions, the conductivity level which we have attained is approximately 15 S/cm. The PEDOT coated viscose and polyester fibers were compared in order to find out the best suitable substrate material. For increasing the service life of obtained conductive fibers, a thin layer of silicon resin was applied on the surface of PEDOT coated fibers.
  •  
10.
  • Bashir, Tariq, et al. (författare)
  • OCVD polymerization of PEDOT : effect of pre-treatment steps on PEDOT-coated conductive fibers and a morphological study of PEDOT distribution on textile yarns
  • 2013
  • Ingår i: Polymers for Advanced Technologies. - : John Wiley & Sons. - 1042-7147 .- 1099-1581. ; 24:2, s. 210-219
  • Tidskriftsartikel (refereegranskat)abstract
    • The functionalization of textile fibers with intrinsically conductive polymers has become a prominent research area throughout the world. A number of coating techniques have already been utilized and optimized to get the uniform layers of conductive polymers on the surface of different substrates. In our previous study, we produced poly(3,4-ethylenedioxythiophene) (PEDOT)-coated conductive fibers by employing oxidative chemical vapor deposition (oCVD) technique. This paper describes the effects of pre-treatment steps, such as surface treatment of textile fibers with organic solvents, drying of oxidant-enriched fibers at variable temperatures and time, and oxidant type on the electrical, mechanical, and thermal properties of PEDOT-coated conductive fibers. Two well-known oxidants, ferric(III)chloride and ferric(III)p-toluenesulfonate (FepTS), were studied, and then their results were compared. In order to verify the PEDOT-coated layer and, to some extent, its impregnation inside the viscose yarns, a morphological study was carried out by using the attenuated total reflectance Fourier transform infrared spectroscopic imaging technique and computed tomography scanning across the obtained conductive fibers. Differential scanning calorimetric and thermogravimetric analysis were utilized to investigate the thermal properties and the contents of PEDOT in PEDOT-coated fibers. The mechanical properties of conductive fibers were evaluated by tensile strength testing of produced fibers. Effects of all of these pre-treatment steps on electrical properties were analyzed with Kiethly picoammeter. This study cannot only be exploited to improve the properties of conductive fibers but also to optimize the oCVD process for the production of conductive textile fibers by coating with different conjugated polymers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy