SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petré Henrik) srt2:(2021)"

Sökning: WFRF:(Petré Henrik) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Petré, Henrik, et al. (författare)
  • Development of Maximal Dynamic Strength During Concurrent Resistance and Endurance Training in Untrained, Moderately Trained, and Trained Individuals : A Systematic Review and Meta-analysis.
  • 2021
  • Ingår i: Sports Medicine. - : Springer. - 0112-1642 .- 1179-2035. ; 51:5, s. 991-1010
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The effect of concurrent training on the development of maximal strength is unclear, especially in individuals with different training statuses.OBJECTIVE: The aim of this systematic review and meta-analysis study was to compare the effect of concurrent resistance and endurance training with that of resistance training only on the development of maximal dynamic strength in untrained, moderately trained, and trained individuals.METHODS: On the basis of the predetermined criteria, 27 studies that compared effects between concurrent and resistance training only on lower-body 1-repetition maximum (1RM) strength were included. The effect size (ES), calculated as the standardised difference in mean, was extracted from each study, pooled, and analysed with a random-effects model.RESULTS: The 1RM for leg press and squat exercises was negatively affected by concurrent training in trained individuals (ES =  - 0.35, p < 0.01), but not in moderately trained ( - 0.20, p = 0.08) or untrained individuals (ES = 0.03, p = 0.87) as compared to resistance training only. A subgroup analysis revealed that the negative effect observed in trained individuals occurred only when resistance and endurance training were conducted within the same training session (ES same session =  - 0.66, p < 0.01 vs. ES different sessions =  - 0.10, p = 0.55).CONCLUSION: This study demonstrated the novel and quantifiable effects of training status on lower-body strength development and shows that the addition of endurance training to a resistance training programme may have a negative impact on lower-body strength development in trained, but not in moderately trained or untrained individuals. This impairment seems to be more pronounced when training is performed within the same session than in different sessions. Trained individuals should therefore consider separating endurance from resistance training during periods where the development of dynamic maximal strength is prioritised.
  •  
2.
  • Wang, Hao, 1975, et al. (författare)
  • Genome-scale metabolic network reconstruction of model animals as a platform for translational research
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:30
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-scale metabolic models (GEMs) are used extensively for analysis of mechanisms underlying human diseases and metabolic malfunctions. However, the lack of comprehensive and high-quality GEMs for model organisms restricts translational utilization of omics data accumulating from the use of various disease models. Here we present a unified platform of GEMs that covers five major model animals, including Mouse1 (Mus musculus), Rat1 (Rattus norvegicus), Zebrafish1 (Danio rerio), Fruitfly1 (Drosophila melanogaster), and Worm1 (Caenorhabditis elegans). These GEMs represent the most comprehensive coverage of the metabolic network by considering both orthology-based pathways and species-specific reactions. All GEMs can be interactively queried via the accompanying web portal Metabolic Atlas. Specifically, through integrative analysis of Mouse1 with RNA-sequencing data from brain tissues of transgenic mice we identified a coordinated up-regulation of lysosomal GM2 ganglioside and peptide degradation pathways which appears to be a signature metabolic alteration in Alzheimer’s disease (AD) mouse models with a phenotype of amyloid precursor protein overexpression. This metabolic shift was further validated with proteomics data from transgenic mice and cerebrospinal fluid samples from human patients. The elevated lysosomal enzymes thus hold potential to be used as a biomarker for early diagnosis of AD. Taken together, we foresee that this evolving open-source platform will serve as an important resource to facilitate the development of systems medicines and translational biomedical applications.
  •  
3.
  • Westblad, Niklas, et al. (författare)
  • The Effect of Autoregulated Flywheel and Traditional Strength Training on Training Load Progression and Motor Skill Performance in Youth Athletes.
  • 2021
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI. - 1661-7827 .- 1660-4601. ; 18:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The effects of flywheel resistance training (FRT) on youth are relatively unknown. The aim of this study was to compare the effects of autoregulated FRT with traditional strength training (TST) on jumping, running performance and resistance training load progression in youth athletes. Thirty youth athletes (11.8 ± 0.9 yr) were matched for peak height velocity (PHV) status and block-randomised into two groups: FRT (n = 15, PHV -0.8 ± 1.6) and TST (n = 15, PHV -0.8 ± 1.5). Twelve resistance training sessions over a six-week intervention with flywheel or barbell squats were performed using autoregulated load prescription. Squat jump (SJ); countermovement jump (CMJ); and 10 m, 20 m and 30 m sprints were assessed pre- and post-intervention. The external load increased similarly for FRT and TST (z = 3.8, p = 0.06). SJ increased for both groups (p < 0.05) but running performance was unaffected (p > 0.05).CONCLUSIONS: FRT resulted in similar load progression and motor skill development in youth athletes as TST, but the perceived exertion was less. Autoregulation is a practical method for adjusting training load during FRT and should be considered as an alternative to autoregulated TST.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy