SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petrov Ivan) srt2:(2015-2019)"

Sökning: WFRF:(Petrov Ivan) > (2015-2019)

  • Resultat 1-10 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alling, Björn, et al. (författare)
  • Dynamic and structural stability of cubic vanadium nitride
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X .- 2469-9950 .- 2469-9969. ; 91:5, s. 054101-
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural phase transitions in epitaxial stoichiometric VN/MgO(011) thin films are investigated using temperature-dependent synchrotron x-ray diffraction (XRD), selected-area electron diffraction (SAED), resistivity measurements, high-resolution cross-sectional transmission electron microscopy, and ab initio molecular dynamics (AIMD). At room temperature, VN has the B1 NaCl structure. However, below T-c = 250 K, XRD and SAED results reveal forbidden (00l) reflections of mixed parity associated with a noncentrosymmetric tetragonal structure. The intensities of the forbidden reflections increase with decreasing temperature following the scaling behavior I proportional to (T-c - T)(1/2). Resistivity measurements between 300 and 4 K consist of two linear regimes resulting from different electron/phonon coupling strengths in the cubic and tetragonal-VN phases. The VN transport Eliashberg spectral function alpha F-2(tr)(h omega), the product of the phonon density of states F(h omega) and the transport electron/phonon coupling strength alpha(2)(tr)(h omega), is determined and used in combination with AIMD renormalized phonon dispersion relations to show that anharmonic vibrations stabilize the NaCl structure at T greater than T-c. Free-energy contributions due to vibrational entropy, often neglected in theoretical modeling, are essential for understanding the room-temperature stability of NaCl-structure VN, and of strongly anharmonic systems in general.
  •  
2.
  • Bakhit, Babak, et al. (författare)
  • Controlling the B/Ti ratio of TiBx thin films grown by high-power impulse magnetron sputtering
  • 2018
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 36:3
  • Tidskriftsartikel (refereegranskat)abstract
    • TiBx thin films grown from compound TiB2 targets by magnetron sputter deposition are typically highly over-stoichiometric, with x ranging from 3.5 to 2.4, due to differences in Ti and B preferential-ejection angles and gas-phase scattering during transport from the target to the substrate. Here, the authors demonstrate that stoichiometric TiB2 films can be obtained using highpower impulse magnetron sputtering (HiPIMS) operated in power-controlled mode. The B/Ti ratio x of films sputter-deposited in Ar is controllably varied from 2.08 to 1.83 by adjusting the length of HiPIMS pulses t(on) between 100 and 30 mu s, while maintaining average power and pulse frequency constant. This results in peak current densities J(T), peak ranging from 0.27 to 0.88 A/cm(2). Energy- and time-resolved mass spectrometry analyses of the ion fluxes incident at the substrate position show that the density of metal ions increases with decreasing t(on) due to a dramatic increase in J(T, peak) resulting in the strong gas rarefaction. With t(on)amp;lt;60 mu s (J(T),(peak)amp;gt; 0.4 A/cm(2)), film growth is increasingly controlled by ions incident at the substrate, rather than neutrals, as a result of the higher plasma dencity and, hence, electron-impact ionization probablity. Thus, since sputter- ejected Ti atoms have a higher probability of being ionized than B atoms, due to their lower first-ionization potential and larger ionization cross-section, the Ti concentration in as-deposited films increases with decreasing ton (increasing J(T,peak)) as ionized sputtered species are steered to the substrate by the plasma in order to maintain charge neutrality. Published by the AVS.
  •  
3.
  • Bakhit, Babak, et al. (författare)
  • Strategy for simultaneously increasing both hardness and toughness in ZrB2-rich Zr1-xTaxBy thin films
  • 2019
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : A V S AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 37:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Refractory transition-metal diborides exhibit inherent hardness. However, this is not always sufficient to prevent failure in applications involving high mechanical and thermal stress, since hardness is typically accompanied by brittleness leading to crack formation and propagation. Toughness, the combination of hardness and ductility, is required to avoid brittle fracture. Here, the authors demonstrate a strategy for simultaneously enhancing both hardness and ductility of ZrB2-rich thin films grown in pure Ar on Al2O3(0001) and Si(001) substrates at 475 degrees C. ZrB2.4 layers are deposited by dc magnetron sputtering (DCMS) from a ZrB2 target, while Zr1-xTaxBy alloy films are grown, thus varying the B/metal ratio as a function of x, by adding pulsed high-power impulse magnetron sputtering (HiPIMS) from a Ta target to deposit Zr1-xTaxBy alloy films using hybrid Ta-HiPIMS/ZrB2-DCMS sputtering with a substrate bias synchronized to the metal-rich portion of each HiPIMS pulse. The average power P-Ta (and pulse frequency) applied to the HiPIMS Ta target is varied from 0 to 1800W (0 to 300 Hz) in increments of 600W (100 Hz). The resulting boron-to-metal ratio, y = B/(Zr+Ta), in as-deposited Zr1-xTaxBy films decreases from 2.4 to 1.5 as P-Ta is increased from 0 to 1800W, while x increases from 0 to 0.3. A combination of x-ray diffraction (XRD), glancing-angle XRD, transmission electron microscopy (TEM), analytical Z-contrast scanning TEM, electron energy-loss spectroscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and atom-probe tomography reveals that all films have the hexagonal AlB2 crystal structure with a columnar nanostructure, in which the column boundaries of layers with 0 amp;lt;= x amp;lt; 0.2 are B-rich, whereas those with x amp;gt;= 0.2 are Ta-rich. The nanostructural transition, combined with changes in average column widths, results in an similar to 20% increase in hardness, from 35 to 42 GPa, with a simultaneous increase of similar to 30% in nanoindentation toughness, from 4.0 to 5.2MPa root m. Published by the AVS.
  •  
4.
  • Chipatecua Godoy, Yuri, et al. (författare)
  • Corrosion Resistant TiTaN and TiTaAlN Thin Films Grown by Hybrid HiPIMS/DCMS Using Synchronized Pulsed Substrate Bias with No External Substrate Heating
  • 2019
  • Ingår i: Coatings. - : MDPI. - 2079-6412. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Ti0.92Ta0.08N and Ti0.41Al0.51Ta0.08N thin films grown on stainless-steel substrates, with no external heating, by hybrid high-power impulse and dc magnetron sputtering (HiPIMS/DCMS), were investigated for corrosion resistance. The Ta target was operated in HiPIMS mode to supply pulsed Ta-ion fluxes, while two Ti (or Ti and Al) targets were operated in DCSM mode in order to provide a high deposition rate. Corrosion resistance was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy employing a 3.5% NaCl solution at room temperature. The 300-nm-thick transition-metal nitride coatings exhibited good corrosion resistance due to film densification resulting from pulsed heavy Ta-ion irradiation during film growth. Corrosion protective efficiencies were above 99.8% for both Ti0.41Al0.51Ta0.08N and Ti0.92Ta0.08N, and pore resistance was apparently four orders of magnitude higher than for bare 304 stainless-steel substrates.
  •  
5.
  • Edström, Daniel, et al. (författare)
  • Effects of incident N atom kinetic energy on TiN/TiN(001) film growth dynamics: A molecular dynamics investigation
  • 2017
  • Ingår i: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 121:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale classical molecular dynamics simulations of epitaxial TiN/TiN(001) thin film growth at 1200 K, a temperature within the optimal range for epitaxial TiN growth, with an incident N-to-Ti flux ratio of four, are carried out using incident N energies E-N = 2 and 10 eV and incident Ti energy E-Ti = 2 eV. To further highlight the effect of E-N, we grow a bilayer film with E-N = 2 eV initially and then switch to E-N = 10 eV. As-deposited layers are analyzed as a function of composition, island-size distribution, island-edge orientation, and vacancy formation. Results show that growth with E-N = 2 eV results in films that are globally overstoichiometric with islands bounded by N-terminated polar 110 edges, whereas films grown with E-N = 10 eV are flatter and closer to stoichiometric. However, E-N = 10 eV layers exhibit local N deficiency leading to the formation of isolated 111-oriented islands. Films grown by changing the incident energy from 2 to 10 eV during growth are more compact than those grown entirely with E-N = 2 eV and exhibit greatly reduced concentrations of upper-layer adatoms, admolecules, and small clusters. Islands with 110 edges formed during growth with E-N = 2 eV transform to islands with 100 edges as E-N is switched to 10 eV. Published by AIP Publishing.
  •  
6.
  • Edström, Daniel, et al. (författare)
  • Elastic properties and plastic deformation of TiC- and VC-based alloys
  • 2018
  • Ingår i: Acta Materialia. - : PERGAMON-ELSEVIER SCIENCE LTD. - 1359-6454 .- 1873-2453. ; 144, s. 376-385
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition-metal (TM) carbides are an important class of hard, protective coating materials; however, their brittleness often limits potential applications. We use density functional theory to investigate the possibility of improving ductility by forming pseudobinary cubic (MMC)-M-1-C-2 alloys, for which M-1 = Ti or V and M-2 = W or Mo. The alloying elements are chosen based on previous results showing improved ductility of the corresponding pseudobinary nitride alloys with respect to their parent compounds. While commonly-used empirical criteria do not indicate enhanced ductility in the carbide alloys, calculated stress/strain curves along known slip systems, supported by electronic structure analyses, indicate ductile behavior for VMoC. As VMoC layers are sheared along the 1 (1) over bar0 direction on {111} planes, the stress initially increases linearly up to a yield point where the accumulated stress is partially dissipated. With further increase in strain, the stress increases again until fracture occurs. A similar mechanical behavior is observed for the corresponding TM nitride VMoN, known to be a ductile ceramic material [1]. Thus, our results show that VMoC is a TM carbide alloy which may be both hard and ductile, i.e. tough. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
7.
  • Edström, Daniel, et al. (författare)
  • Large-scale molecular dynamics simulations of TiN/TiN(001) epitaxial film growth
  • 2016
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : AMER INST PHYSICS. - 0734-2101 .- 1520-8559. ; 34:4, s. 041509-1-041509-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale classical molecular dynamics simulations of epitaxial TiN/TiN(001) thin film growth at 1200K are carried out using incident flux ratios N/Ti -1, 2, and 4. The films are analyzed as a function of composition, island size distribution, island edge orientation, and vacancy formation. Results show that N/Ti-1 films are globally understoichiometric with dispersed Ti-rich surface regions which serve as traps to nucleate 111-oriented islands, leading to local epitaxial breakdown. Films grown with N/Ti=2 are approximately stoichiometric and the growth mode is closer to layer-by-layer, while N/Ti-4 films are stoichiometric with N-rich surfaces. As N/Ti is increased from 1 to 4, island edges are increasingly polar, i. e., 110-oriented, and N-terminated to accommodate the excess N flux, some of which is lost by reflection of incident N atoms. N vacancies are produced in the surface layer during film deposition with N/Ti-1 due to the formation and subsequent desorption of N-2 molecules composed of a N adatom and a N surface atom, as well as itinerant Ti adatoms pulling up N surface atoms. The N vacancy concentration is significantly reduced as N/Ti is increased to 2; with N/Ti-4, Ti vacancies dominate. Overall, our results show that an insufficient N/Ti ratio leads to surface roughening via nucleation of small dispersed 111 islands, whereas high N/Ti ratios result in surface roughening due to more rapid upper-layer nucleation and mound formation. The growth mode of N/Ti-2 films, which have smoother surfaces, is closer to layer-by-layer. (C) 2016 American Vacuum Society.
  •  
8.
  • Edström, Daniel, 1986-, et al. (författare)
  • Mechanical properties of VMoNO as a function of oxygen concentration : Toward development of hard and tough refractory oxynitrides
  • 2019
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 37:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Improved toughness is a central goal in the development of wear-resistant refractory ceramic coatings. Extensive theoretical and experimental research has revealed that NaCl-structure VMoN alloys exhibit surprisingly high ductility combined with high hardness and toughness. However, during operation, protective coatings inevitably oxidize, a problem that may compromise material properties and performance. Here, the authors explore the role of oxidation in altering VMoN properties. Density functional theory and theoretical intrinsic hardness models are used to investigate the mechanical behavior of cubic V0.5Mo0.5N1-xOx solid solutions as a function of the oxygen concentration x. Elastic constant and intrinsic hardness calculations show that oxidation does not degrade the mechanical properties of V0.5Mo0.5N. Electronic structure analyses indicate that the presence of oxygen reduces the covalent bond character, which slightly lowers the alloy strength and intrinsic hardness. Nevertheless, the character of metallic d-d states, which are crucial for allowing plastic deformation and enhancing toughness, remains unaffected. Overall, the authors' results suggest that VMoNO oxynitrides, with oxygen concentrations as high as 50%, possess high intrinsic hardness, while still being ductile. Published by the AVS.
  •  
9.
  • Edström, Daniel, et al. (författare)
  • The dynamics of TiNx (x = 1 – 3) admolecule interlayer and intralayer transport on TiN/TiN(001) islands
  • 2015
  • Ingår i: Thin Solid Films. - : Elsevier. - 0040-6090 .- 1879-2731. ; 589, s. 133-144
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been shown both experimentally and by density functional theory calculations that the primary diffusing species during the epitaxial growth of TiN/TiN(001) are Ti and N adatoms together with TiNx complexes (x = 1, 2, 3), in which the dominant N-containing admolecule species depends upon the incident N/Ti flux ratio. Here, we employ classical molecular dynamics (CMD) simulations to probe the dynamics of TiNx (x = 1–3) admolecules on 8 × 8 atom square, single-atom-high TiN islands on TiN(001), as well as pathways for descent over island edges. The simulations are carried out at 1000 K, a reasonable epitaxial growth temperature. We find that despite their lower mobility on infinite TiN(001) terraces, both TiN and TiN2 admolecules funnel toward descending steps and are incorporated into island edges more rapidly than Ti adatoms. On islands, TiN diffuses primarily via concerted translations, but rotation is the preferred diffusion mechanism on infinite terraces. TiN2 migration is initiated primarily by rotation about one of the N admolecule atoms anchored at an epitaxial site. TiN admolecules descend from islands by direct hopping over edges and by edge exchange reactions, while TiN2 trimers descend exclusively by hopping. In contrast, TiN3 admolecules are essentially stationary and serve as initiators for local island growth. Ti adatoms are the fastest diffusing species on infinite TiN(001) terraces, but on small TiN/TiN(001) islands, TiN dimers provide more efficient mass transport. The overall results reveal the effect of the N/Ti precursor flux ratio on TiN(001) surface morphological evolution and growth modes.
  •  
10.
  • Edström, Daniel, 1986-, et al. (författare)
  • TiN film growth on misoriented TiN grains with simultaneous low-energy bombardment : Restructuring leading to epitaxy
  • 2019
  • Ingår i: Thin Solid Films. - : Elsevier. - 0040-6090 .- 1879-2731. ; 688
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform large-scale molecular dynamics simulations of TiN deposition at 1200 K on TiN substrates consisting of under-stoichiometric (N/Ti = 0.86) misoriented grains. The energy of incoming Ti atoms is 2 eV and that of incoming N atoms is 10 eV. The simulations show that misoriented grains are reoriented during the early stages of growth, after which the film grows 001 epitaxially and is nearly stoichiometric. The grain reorientation coincides with an increase in film N/Ti ratio. As the grains reorient, additional nitrogen can no longer be accommodated, and the film composition becomes stoichiometric as the overlayer grows epitaxially.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy