SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petrovic Natasa) srt2:(2020-2024)"

Sökning: WFRF:(Petrovic Natasa) > (2020-2024)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cannon, Barbara, et al. (författare)
  • Human brown adipose tissue : Classical brown rather than brite/beige?
  • 2020
  • Ingår i: Experimental Physiology. - 0958-0670 .- 1469-445X. ; 105:8, s. 1191-1200
  • Tidskriftsartikel (refereegranskat)abstract
    • New Findings What is the topic of this review? It has been suggested that human brown adipose tissue (BAT) is more similar to the brite/beige adipose tissue of mice than to classical BAT of mice. The basis of this is discussed in relationship to the physiological conditions of standard experimental mice.
  •  
2.
  • Davies, Victoria S., et al. (författare)
  • Repeated short excursions from thermoneutrality suffice to restructure brown adipose tissue
  • 2023
  • Ingår i: Biochimie. - : Elsevier BV. - 0300-9084 .- 1638-6183. ; 210, s. 40-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Given the presence of brown adipose tissue in adult humans, an important issue is whether human brown adipose tissue is recruitable. Cold exposure is the canonical recruitment treatment; however, in experimental animals (mice), recruitment of brown adipose tissue is normally induced by placing the mice in constant cold, a procedure not feasible in humans. For possible translational applications, we have therefore investigated whether shorter daily excursions from thermoneutrality would suffice to qualitatively and quantitatively induce recruitment in mice. Mice, housed at thermoneutrality (30 °C) to mimic human conditions, were transferred every day for 4 weeks to cool conditions (18 °C), for 0, 15, 30, 120 and 420 min (or placed constantly in 18 °C). On the examination day, the mice were not exposed to cold. Very short daily exposures (≤30 minutes) were sufficient to induce structural changes in the form of higher protein density in brown adipose tissue, changes that may affect the identification of the tissue in e.g. computer tomography and other scan studies. To estimate thermogenic capacity, UCP1 protein levels were followed. No UCP1 protein was detectable in inguinal white adipose tissue. In the interscapular brown adipose tissue, a remarkable two-phase reaction was seen. Very short daily exposures (≤30 minutes) were sufficient to induce a significant increase in total UCP1 levels. For attainment of full cold acclimation, the mice had, however, to remain exposed to the cold. The studies indicate that marked alterations in brown adipose tissue composition can be induced in mammals through relatively modest stimulation events.
  •  
3.
  • Fischer, Alexander W., et al. (författare)
  • Thermoneutrality-Induced Macrophage Accumulation in Brown Adipose Tissue Does Not Impair the Tissue's Competence for Cold-Induced Thermogenic Recruitment
  • 2020
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media SA. - 1664-2392. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Brown adipose tissue from mice living under conditions approaching human thermal and nutritional conditions (prolonged exposure to thermoneutral temperature and to an energy-rich (high-fat, high-sugar) diet) - referred to as physiologically humanized mice, displays morphological and molecular characteristics significantly different from those observed in young, chow-fed mice maintained at room temperature - referred to as standard mice. Here, we further examined brown fat from physiologically humanized and standard mice, as well as from mice exposed to thermoneutrality for a long time but not to an energy-rich diet - referred to here as long-term thermoneutral mice. Global transcriptome analysis of brown fat revealed that genes that were the most upregulated in brown fat of thermoneutral mice (both physiologically humanized and long-term thermoneutral) were those related to inflammatory processes, including genes expressed selectively in macrophages. Cellular and molecular analyses confirmed that brown fat from thermoneutral mice was heavily infiltrated by macrophages, predominantly organized into crown-like structures. However, despite this, the brown fat of thermoneutral mice retained full competence to attain the greatest possible recruitment state and became macrophage-depleted during the process of cold acclimation. Thus, profound macrophage accumulation does not influence the thermogenic recruitment competence of brown fat.
  •  
4.
  • Galvão Valdivia, Luís Felipe, et al. (författare)
  • Cold acclimation and pioglitazone combined increase thermogenic capacity of brown and white adipose tissues but this does not translate into higher energy expenditure in mice
  • 2023
  • Ingår i: American Journal of Physiology. Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 324:4, s. E358-E373
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold acclimation and pharmacological peroxisome proliferator-activated receptor γ (PPARγ) activation have each earlier been shown to recruit brown adipose tissue (BAT) and beige adipocytes thermogenic machinery, enhancing uncoupling protein 1 (UCP1)-mediated thermogenic capacity. We here investigated whether cold acclimation and PPARγ agonism combined have additive effects in inducing brown and beige adipocytes UCP1 content and whether this translates into a higher thermogenic capacity and energy expenditure. C57BL/6J mice treated or not with pioglitazone (30 mg/kg/day) were maintained at 21°C or exposed to cold (7°C) for 15 days and evaluated for thermogenic capacity, energy expenditure and interscapular BAT (iBAT) and inguinal white adipose tissue (iWAT) mass, morphology, UCP1 content and gene expression, glucose uptake and oxygen consumption. Cold acclimation and PPARγ agonism combined synergistically increased iBAT and iWAT total UCP1 content and mRNA levels of the thermogenesis-related proteins PGC1a, CIDEA, FABP4, GYK, PPARa, LPL, GLUTs (GLUT1 in iBAT and GLUT4 in iWAT), and ATG when compared to cold and pioglitazone individually. This translated into a stronger increase in body temperature in response to the β3-adrenergic agonist CL316,243 and iBAT and iWAT respiration induced by succinate and pyruvate in comparison to that seen in either cold-acclimated or pioglitazone-treated mice. However, basal energy expenditure, BAT glucose uptake and glucose tolerance were not increased above that seen in cold-acclimated untreated mice. In conclusion, cold acclimation and PPARγ agonism combined induced a robust increase in brown and beige adipocytes UCP1 content and thermogenic capacity, much higher than each treatment individually. However, our findings enforce the concept that increases in total UCP1 do not innately lead to higher energy expenditure.
  •  
5.
  • Otton, Rosemari, et al. (författare)
  • On the Validity of Adipogenic Cell Lines as Model Systems for Browning Processes : In Authentic Brown, Brite/Beige, and White Preadipocytes, There is No Cell-Autonomous Thermogenic Recruitment by Green Tea Compounds
  • 2021
  • Ingår i: Frontiers in Nutrition. - : Frontiers Media SA. - 2296-861X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential ability of nutritional compounds to induce or enhance the browning of adipocytes has attracted large interest as a workable means of combatting the obesity epidemic. Green tea compounds are discussed as such inducers of an enhanced thermogenic capacity and activity. However, the cell-autonomous effects of green tea compounds on adipocytes have until now only been demonstrated in adipogenic cell lines (3T3-L1 and 3T3-F442A), i.e., cells of undefined tissue lineage. In this study, we examine the ability of green tea compounds to cell-autonomously induce thermogenic recruitment in authentic brown and brite/beige adipocytes in vitro. In primary brown adipocytes, the green tea compounds suppressed basal UCP1 gene expression, and there was no positive interaction between the compounds and adrenergic stimulation. In white adipocytes, green tea compounds decreased both basal and norepinephrine-induced UCP1 mRNA levels, and this was associated with the suppression of cell differentiation, indicated by reduced lipogenic gene expression and lipid accumulation. A lack of interaction between rosiglitazone and green tea compounds suggests that the green tea compounds do not directly interact with the PPARγ pathway. We conclude that there is a negative effect of the green tea compounds on basal UCP1 gene expression, in both brown and white primary adipocytes, in contrast to the positive effects earlier reported from studies in adipogenic cell lines. We posit that the epigenetic status of the adipogenic cell lines is fundamentally different from that of genuine brown and white adipocytes, reflected, e.g., in several-thousand-fold differences in UCP1 gene expression levels. Thus, results obtained with adipogenic cell lines cannot unreservedly be extrapolated as being relevant for authentic effects in brown and white adipocytes. We suggest that this conclusion can be of general concern for studies attempting to establish physiologically relevant cell-autonomous effects.
  •  
6.
  • Shabalina, Irina, et al. (författare)
  • Enhanced ROS Production in Mitochondria from Prematurely Aging mtDNA Mutator Mice
  • 2024
  • Ingår i: Biochemistry (Moscow). - 0006-2979 .- 1608-3040. ; 89:2, s. 279-298
  • Tidskriftsartikel (refereegranskat)abstract
    • An increase in mitochondrial DNA (mtDNA) mutations and an ensuing increase in mitochondrial reactive oxygen species (ROS) production have been suggested to be a cause of the aging process (the mitochondrial hypothesis of aging). In agreement with this, mtDNA-mutator mice accumulate a large amount of mtDNA mutations, giving rise to defective mitochondria and an accelerated aging phenotype. However, incongruously, the rates of ROS production in mtDNA mutator mitochondria have generally earlier been reported to be lower - not higher - than in wildtype, thus apparently invalidating the mitochondrial hypothesis of aging. We have here re-examined ROS production rates in mtDNA-mutator mice mitochondria. Using traditional conditions for measuring ROS (succinate in the absence of rotenone), we indeed found lower ROS in the mtDNA-mutator mitochondria compared to wildtype. This ROS mainly results from reverse electron flow driven by the membrane potential, but the membrane potential reached in the isolated mtDNA-mutator mitochondria was 33 mV lower than that in wildtype mitochondria, due to the feedback inhibition of succinate oxidation by oxaloacetate, and to a lower oxidative capacity in the mtDNA-mutator mice, explaining the lower ROS production. In contrast, in normal forward electron flow systems (pyruvate (or glutamate) + malate or palmitoyl-CoA + carnitine), mitochondrial ROS production was higher in the mtDNA-mutator mitochondria. Particularly, even during active oxidative phosphorylation (as would be ongoing physiologically), higher ROS rates were seen in the mtDNA-mutator mitochondria than in wildtype. Thus, when examined under physiological conditions, mitochondrial ROS production rates are indeed increased in mtDNA-mutator mitochondria. While this does not prove the validity of the mitochondrial hypothesis of aging, it may no longer be said to be negated in this respect. This paper is dedicated to the memory of Professor Vladimir P. Skulachev.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy