SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pham Quoc Bao) srt2:(2022)"

Sökning: WFRF:(Pham Quoc Bao) > (2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rahman, Khalil Ur, et al. (författare)
  • Evaluating the impact of the environment on depleting groundwater resources: a case study from a semi-arid and arid climatic region
  • 2022
  • Ingår i: Hydrological Sciences Journal. - : Informa UK Limited. - 0262-6667 .- 2150-3435.
  • Tidskriftsartikel (refereegranskat)abstract
    • This study, for the first time, assesses the impact of critical environmental factors on groundwater using Bayesian network (BN) integrated with analytical hierarchy process (AHP) and develops a groundwater vulnerability map. The considered environmental factors are divided into the following categories: physical (rainfall, temperature (Tmax/Tmin), relative humidity (RHmax/RHmin)), water use and demand (surface water availability (SW) and number of tubewells (NTW)), agriculture and land use (total irrigated area (TIA), total cropped area (TCA), and total area sown (TAS)), and population. Results show a negative relationship of rainfall, RHmax/RHmin, and SW and a positive relationship of the remaining variables with groundwater. Elasticities demonstrate that a 1% change in SW (rainfall), major contributors, results in a decrease by 0.64% (0.55%) in groundwater in Bahawalpur (Multan). A 1% change in population (NTW), major consumers, results in an increase by 0.74% (0.70%) in depth to water table (DWT) across Jhang (Khanewal). The vulnerability map shows that high and very high vulnerability classes account for more than 50% of the total area of Punjab.
  •  
2.
  • Abba, S.I., et al. (författare)
  • Integrating feature extraction approaches with hybrid emotional neural networks for water quality index modeling
  • 2022
  • Ingår i: Applied Soft Computing. - : Elsevier. - 1568-4946 .- 1872-9681. ; 114
  • Tidskriftsartikel (refereegranskat)abstract
    • The establishment of water quality prediction models is vital for aquatic ecosystems analysis. The traditional methods of water quality index (WQI) analysis are time-consuming and associated with a high degree of errors. These days, the application of artificial intelligence (AI) based models are trending for capturing nonlinear and complex processes. Therefore, the present study was conducted to predict the WQI in the Kinta River, Malaysia by employing the hybrid AI model i.e., GA-EANN (genetic algorithm-emotional artificial neural network). The extreme gradient boosting (XGB) and neuro-sensitivity analysis (NSA) approaches were utilized for feature extraction, and six different model combinations were derived to examine the relationship among the WQI with water quality (WQ) variables. The efficacy of the proposed hybrid GA-EANN model was evaluated against the backpropagation neural network (BPNN) and multilinear regression (MLR) models during calibration, and validation periods based on Nash–Sutcliffeefficiency (NSE), mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and correlation coefficient (CC) indicators. According to results of appraisal the hybrid GA-EANN model produced better outcomes (NSE = 0.9233/ 0.9018, MSE = 10.5195/ 9.7889 mg/L, RMSE = 3.2434/ 3.1287 mg/L, MAPE = 3.8032/ 3.0348 mg/L, CC = 0.9609/ 0.9496) in calibration/ validation phases than BPNN and MLR models. In addition, the results indicate the better performance and suitability of the hybrid GA-EANN model with five input parameters in predicting the WQI for the study site.
  •  
3.
  • Achite, Mohammed, et al. (författare)
  • Enhancing Rainfall-Runoff Simulation via Meteorological Variables and a Deep-Conceptual Learning-Based Framework
  • 2022
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate streamflow simulation is crucial for many applications, such as optimal reservoir operation and irrigation. Conceptual techniques employ physical ideas and are suitable for representing the physics of the hydrologic model, but they might fail in competition with their more advanced counterparts. In contrast, deep learning (DL) approaches provide a great computational capability for streamflow simulation, but they rely on data characteristics and the physics of the issue cannot be fully understood. To overcome these limitations, the current study provided a novel framework based on a combination of conceptual and DL techniques for enhancing the accuracy of streamflow simulation in a snow-covered basin. In this regard, the current study simulated daily streamflow in the Kalixälven river basin in northern Sweden by integrating a snow-based conceptual hydrological model (MISD) with a DL model. Daily precipitation, air temperature (average, minimum, and maximum), dew point temperature, evapotranspiration, relative humidity, sunshine duration, global solar radiation, and atmospheric pressure data were used as inputs for the DL model to examine the effect of each meteorological variable on the streamflow simulation. Results proved that adding meteorological variables to the conceptual hydrological model underframe of parallel settings can improve the accuracy of streamflow simulating by the DL model. The MISD model simulated streamflow had an MAE = 8.33 (cms), r = 0.88, and NSE = 0.77 for the validation phase. The proposed deep-conceptual learning-based framework also performed better than the standalone MISD model; the DL method had an MAE = 7.89 (cms), r = 0.90, and NSE = 0.80 for the validation phase when meteorological variables and MISD results were combined as inputs for the DL model. The integrated rainfall-runoff model proposed in this research is a new concept in rainfall-runoff modeling which can be used for accurate streamflow simulations.
  •  
4.
  • Mohammadi, Babak, et al. (författare)
  • Application of ERA-Interim, empirical models, and an artificial intelligence-based model for estimating daily solar radiation
  • 2022
  • Ingår i: Ain Shams Engineering Journal. - : Ain Shams University. - 2090-4479 .- 2090-4495. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar radiation plays a pivotal role in the energy balance at the Earth's surface, evaporation, snow melting, water requirements of plants, and hydrological control of catchments. In this work, performance of ERA-Interim (a reanalysis dataset) was examined to estimate solar radiation at Ahvaz, BandarAbbas, and Kermanshah weather stations representing the even spatial distribution over Iran using eight empirical models and an artificial intelligence-based model (SVM: Support Vector Machine). In the calibration set, SVM exhibited the best performance with RMSEs of 249, 299 and 437 J.cm−2.day−1 at the aforementioned stations, respectively. In validation set, SVM reduced the errors in the estimates of solar radiation by 2.5 and 7.3 percent compared to the best empirical model at Ahvaz station (Abdallah model, RMSE = 242 J.cm−2.day−1) and Kermanshah station (Angstrom-Prescott model, RMSE = 315 J.cm−2.day−1), respectively. During the validation at BandarAbbas station, Bahel and Abdallah model (RMSE = 309 J.cm−2.day−1), Angstrom-Prescott model (RMSE = 310 J.cm−2.day−1) and SVM (RMSE = 312 J.cm−2.day−1) showed a relatively similar performance. The results also showed that the ERA-Interim dataset can be a comparatively suitable alternative to some of the empirical models, where radiation or the input parameters of empirical models are not directly measured, with RMSEs ​​of 382.81, 320.82 and 414.1 J.cm−2.day−1 at Ahvaz, BandarAbbas, and Kermanshah stations, respectively (in validation phase); although its error rates are significant compared with the SVM model, and substituting it for artificial intelligence-based models is not recommended.
  •  
5.
  • Rahman, Khalil Ur, et al. (författare)
  • Comparison of machine learning and process-based SWAT model in simulating streamflow in the Upper Indus Basin
  • 2022
  • Ingår i: Applied water science. - : Springer Science and Business Media LLC. - 2190-5487 .- 2190-5495. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • This study appraised and compared the performance of process-based hydrological SWAT (soil and water assessment tool) with a machine learning-based multi-layer perceptron (MLP) models for simulating streamflow in the Upper Indus Basin. The study period ranges from 1998 to 2013, where SWAT and MLP models were calibrated/trained and validated/tested for multiple sites during 1998–2005 and 2006–2013, respectively. The performance of both models was evaluated using nash–sutcliffe efficiency (NSE), coefficient of determination (R2), Percent BIAS (PBIAS), and mean absolute percentage error (MAPE). Results illustrated the relatively poor performance of the SWAT model as compared with the MLP model. NSE, PBIAS, R2, and MAPE for SWAT (MLP) models during calibration ranged from the minimum of 0.81 (0.90), 3.49 (0.02), 0.80 (0.25) and 7.61 (0.01) to the maximum of 0.86 (0.99), 9.84 (0.12), 0.87 (0.99), and 15.71 (0.267), respectively. The poor performance of SWAT compared with MLP might be influenced by several factors, including the selection of sensitive parameters, selection of snow specific sensitive parameters that might not represent actual snow conditions, potential limitations of the SCS-CN method used to simulate streamflow, and lack of SWAT ability to capture the hydropeaking in Indus River sub-basins (at Shatial bridge and Bisham Qila). Based on the robust performance of the MLP model, the current study recommends to develop and assess machine learning models and merging the SWAT model with machine learning models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy