SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pigg Maritta) srt2:(1997-1999)"

Sökning: WFRF:(Pigg Maritta) > (1997-1999)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahl, Niklas, et al. (författare)
  • Missense mutations in the human glutathione synthetase gene result in severe metabolic acidosis, 5-oxoprolinuria, hemolytic anemia and neurological dysfunction
  • 1997
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 6:7, s. 1147-1152
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe glutathione synthetase (GS) deficiency is a rare genetic disorder with neonatal onset. The enzymatic block of the gamma-glutamyl cycle leads to a generalized glutathione deficiency. Clinically affected patients present with severe metabolic acidosis, 5-oxoprolinuria, increased rate of hemolysis and defective function of the central nervous system. The disorder is inherited in an autosomal recessive mode and, until recently, the molecular basis has remained unknown. We have sequenced 18 GS alleles associated with enzyme deficiency and we detected missense mutations by direct sequencing of cDNAs and genomic DNA. In total, 13 different mutations were identified. Four patients were found to be compound heterozygotes and two individuals were apparently homozygous. Reduced enzymatic activities were demonstrated in recombinant protein expressed from cDNAs in four cases with different missense mutations. The results from biochemical analysis of patient specimens, supported by the properties of the expressed mutant proteins, indicate that a residual activity is present in affected individuals. Our results suggest that complete loss of function of both GS alleles is probably lethal. It is postulated that missense mutations will account for the phenotype in the majority of patients with severe GS deficiency.
  •  
2.
  • Pigg, Maritta, et al. (författare)
  • Strong founder effect for a transglutaminase 1 gene mutation in lamellar ichthyosis and congenital ichthyosiform erythroderma from Norway
  • 1998
  • Ingår i: European Journal of Human Genetics. - 1018-4813 .- 1476-5438. ; 6:6, s. 589-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Autosomal recessive congenital ichthyosis (ARCI) is a clinically heterogeneous disorder of keratinisation. It was recently shown that mutations in the transglutaminase 1 (TGM1) gene may be associated with the clinical subtypes lamellar ichthyosis (LI) and non-bullous congenital ichthyosiform erythroderma (CIE). Thirty-six Norwegian families with LI and seven with non-bullous CIE were studied with microsatellite markers linked to the TGMI gene. One common haplotype for two markers was found on 74% of disease associated chromosomes. Three individuals homozygous for the common haplotype, two affected by LI and one affected by CIE, were analysed for mutations in the TGM1 gene. All three patients were found homozygous for a single A to G transition located in the canonical splice acceptor site of intron 5. Probands from the remaining 40 families with LI and CIE were screened for this mutation and the A to G transition was found on 61 out of 72 alleles associated with LI and on 9 out of 15 alleles associated with CIE. These findings suggest a single founder mutation for the majority of patients with LI and CIE in Norway. The 2526A-->G mutation results in the insertion of a guanosine at position 877 (876insG) in the mature cDNA and the frame shift creates a premature termination at codon 293. The mutation was previously observed in one family with a resulting cDNA that included the entire intron 5. These results suggest that the mutation can result in variant transcripts in different individuals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy