SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pincus Robert) "

Sökning: WFRF:(Pincus Robert)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buehler, S.A., et al. (författare)
  • A New Halocarbon Absorption Model Based on HITRAN Cross-Section Data and New Estimates of Halocarbon Instantaneous Clear-Sky Radiative Forcing
  • 2022
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 14:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The article describes a new practical model for the infrared absorption of chlorofluorocarbons and other gases with dense spectra, based on high-resolution transmission molecular absorption database (HITRAN) absorption cross-sections. The model is very simple, consisting of frequency-dependent polynomial coefficients describing the pressure and temperature dependence of absorption. Currently it is implemented for the halocarbon species required by the Radiative Forcing Model Intercomparison Project. In cases where cross-section data is available at a range of different temperatures and pressures, this approach offers practical advantages compared to previously available options, and is traceable, since the polynomial coefficients follow directly from the laboratory spectra. The new model is freely available and has several important applications, notably in remote sensing and in developing advanced radiation schemes for global circulation models that include halocarbon absorption. For demonstration, the model is applied to the problem of computing instantaneous clear-sky halocarbon radiative efficiencies and present day radiative forcing. Results are in reasonable agreement with earlier assessments that were carried out with the less explicit Pinnock method, and thus broadly validate that method. Plain Language Summary Chlorofluorocarbons and other related gases have dense and complicated absorption spectra that can be measured in the laboratory. We bring such measurements to a form that can be used for simulations of the transfer of radiation through the atmosphere. Then we use the new model to calculate new estimates of the climate impact of these man-made gases. The results broadly validate earlier calculations that were done with a less explicit method.
  •  
2.
  • Johansson, Erik, 1981- (författare)
  • Improving the understanding of cloud radiative heating
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Clouds play an essential role in regulating Earth’s radiation budget by reflecting and absorbing energy at different spectra. As they interact with radiation, they can radiatively heat or cool the adjacent atmosphere and the surface. This heating effect can have a strong implication for the circulation and can change the surface properties by, for example, melting sea ice. The lack of high-resolution global observations has previously been a limitation for our understanding of the vertical structure of cloud radiative heating, and for evaluating the cloud radiative effect in climate models. In this thesis, we will investigate and document cloud radiative heating derived from space-based observations. We will focus on two regions, the Arctic and the Tropics, where cloud radiative heating plays an important, but fundamentally different role.In the Tropics, radiative heating at high altitudes influences the large scale circulation. Stratiform, deep convective, and cirrus clouds have a strong radiative impact in the upper troposphere. We found while investigating the Indian monsoon, that thick stratiform clouds will radiatively heat the upper troposphere by more than 0.2 K/day when the monsoon is most intense during June, July and August. Deep convective clouds cause considerable heating in the middle troposphere and at the same time, cool the tropical tropopause layer (TTL). These two thick cloud types will also cool the surface during the monsoon, weakening the temperature gradient between land and ocean. During these months, cirrus clouds are frequently located inside the TTL. We further find that in the Tropics, the climate model, EC-Earth, can capture the seasonal variations in cloud radiative heating seen in the satellite observations. However, the model overestimates the radiative heating in the upper region  and underestimates them in the middle region of the troposphere. This dissimilarity is caused by unrealistic longwave heating and low cloud fraction in the upper and middle of the troposphere, respectively.Radiative heating from cirrus, located inside the TTL, is considered to play an important role in the mass transport from the troposphere to the stratosphere. This heating generates enough buoyancy so that the air can pass the barrier of zero net radiative heating. We find that high thin single-layer clouds can heat the upper troposphere by 0.07 K/day. If a thick cloud layer is present underneath, they will radiatively suppress the high cloud, causing it to cool the adjacent air instead. The optical depth and cloud top height of the underlying cloud are two crucial factors that radiatively impact the high cloud above.Warm moist air is regularly transported from the mid-latitudes into the Arctic by low- and high-pressure systems. As the moist air enters the Arctic, it increases the cloudiness and warms the surface. This surface heating has the potential to affect the ice cover months after the intrusion. We find that during extreme moist intrusions, the surface temperature in the Arctic can rise by more than 5 K during the winter months with an increase in cloudiness by up to 30% downstream from the intrusion. These extra clouds radiatively heat the lower part of the atmosphere and cool the middle part, affecting the stability of the Arctic atmosphere.
  •  
3.
  • Mauritsen, Thorsten, et al. (författare)
  • Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2
  • 2019
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 11:4, s. 998-1038
  • Tidskriftsartikel (refereegranskat)abstract
    • A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model. 
  •  
4.
  • Smith, Christopher J., et al. (författare)
  • Effective radiative forcing and adjustments in CMIP6 models
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:16, s. 9591-9618
  • Tidskriftsartikel (refereegranskat)abstract
    • The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (+/- 0.23) W m(-2), comprised of 1.81 (+/- 0.09) Wm(-2) from CO2, 1.08 (+/- 0.21) Wm(-2) from other well-mixed greenhouse gases, -1.01 (+/- 0.23) W m(-2) from aerosols and -0.09 (+/- 0.13) W m(-2) from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m(-2). The majority of the remaining 0.21 W m(-2) is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol-cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from -0.63 to -1.37 W m(-2), exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4 x CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
  •  
5.
  • Voigt, Aiko, et al. (författare)
  • Fast and slow shifts of the zonal-mean intertropical convergence zone in response to an idealized anthropogenic aerosol
  • 2017
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 9:2, s. 870-892
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous modeling work showed that aerosol can affect the position of the tropical rain belt, i.e., the intertropical convergence zone (ITCZ). Yet it remains unclear which aspects of the aerosol impact are robust across models, and which are not. Here we present simulations with seven comprehensive atmosphere models that study the fast and slow impacts of an idealized anthropogenic aerosol on the zonalmean ITCZ position. The fast impact, which results from aerosol atmospheric heating and land cooling before sea-surface temperature (SST) has time to respond, causes a northward ITCZ shift. Yet the fast impact is compensated locally by decreased evaporation over the ocean, and a clear northward shift is only found for an unrealistically large aerosol forcing. The local compensation implies that while models differ in atmospheric aerosol heating, this does not contribute to model differences in the ITCZ shift. The slow impact includes the aerosol impact on the ocean surface energy balance and is mediated by SST changes. The slow impact is an order of magnitude more effective than the fast impact and causes a clear southward ITCZ shift for realistic aerosol forcing. Models agree well on the slow ITCZ shift when perturbed with the same SST pattern. However, an energetic analysis suggests that the slow ITCZ shifts would be substantially more modeldependent in interactive-SST setups due to model differences in clear-sky radiative transfer and clouds. We also discuss implications for the representation of aerosol in climate models and attributions of recent observed ITCZ shifts to aerosol.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy