SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pinnock S B) srt2:(2005-2009)"

Sökning: WFRF:(Pinnock S B) > (2005-2009)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Curley, J P, et al. (författare)
  • Increased body fat in mice with a targeted mutation of the paternally expressed imprinted gene Peg3.
  • 2005
  • Ingår i: The FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - : Wiley. - 1530-6860. ; 19:10, s. 1302-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Peg3 encodes a C2H2 type zinc finger protein that is implicated in a novel physiological pathway regulating core body temperature, feeding behavior, and obesity in mice. Peg3+/- mutant mice develop an excess of abdominal, subcutaneous, and intra-scapular fat, despite a lifetime of lower food intake than wild-type animals. However, they start life with reduced fat reserves and are slower to enter puberty. These mice maintain a lower core body temperature, fail to respond to a cold challenge, and have lower metabolic activity as measured by oxygen consumption. Plasma leptin levels are significantly higher than in wild types, and Peg3+/- mice appear to have developed leptin resistance. Administration of exogenous leptin resulted in a significant reduction in food intake in wild-type mice that was not observed in Peg3+/- mutants. This mutation, which is strongly expressed in hypothalamic tissue during development, has the capacity to regulate multiple events relating to energy homeostasis.
  •  
2.
  • Benrick, Anna, 1979, et al. (författare)
  • Interleukin-6 gene knockout influences energy balance regulating peptides in the hypothalamic paraventricular and supraoptic nuclei.
  • 2009
  • Ingår i: Journal of neuroendocrinology. - : Wiley. - 1365-2826 .- 0953-8194. ; 21:7, s. 620-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-6 is a pro-inflammatory cytokine that also affects metabolic function because IL-6 depleted (IL-6(-/-)) mice develop late-onset obesity. IL-6 appears to act in the central nervous system, presumably in the hypothalamus, to increase energy expenditure that appears to involve stimulation of the sympathetic nervous system. In the present study, we explored possible central mechanisms for the effects exerted by IL-6 on body fat. Therefore, we measured the effects of IL-6 depletion in IL-6(-/-) mice on expression of key hypothalamic peptide genes involved in energy balance by the real time polymerase chain reaction. Additionally, co-localisation between such peptides and IL-6 receptor alpha was investigated by immunohistochemistry. IL-6 deficiency decreased the expression of several peptides found in the paraventricular nucleus (PVN), which is a nucleus that has been attributed an adipostatic function. For example, corticotrophin-releasing hormone (CRH), which is reported to stimulate the sympathetic nervous system, was decreased by 40% in older IL-6(-/-) mice. Oxytocin, which is reported to prevent obesity, was also decreased in older IL-6(-/-) animals, as was arginine vasopressin (AVP). The IL-6 receptor alpha was abundantly expressed in the PVN, but also in the supraoptic nucleus, and was shown to be co-expressed to a high extent with CRH, AVP, oxytocin and thyrotrophin-releasing hormone. These data indicate that depletion of endogenous IL-6, a body fat suppressing cytokine, is associated with the decreased expression of CRH and oxytocin (i.e. energy balance regulating peptides) as well as AVP in the PVN. Because IL-6 receptor alpha is co-expressed with CRH, oxytocin and AVP, IL-6 could stimulate the expression of these peptides directly.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy