SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pircs Karolina) srt2:(2022)"

Sökning: WFRF:(Pircs Karolina) > (2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Drouin-Ouellet, Janelle, et al. (författare)
  • Age-related pathological impairments in directly reprogrammed dopaminergic neurons derived from patients with idiopathic Parkinson's disease
  • 2022
  • Ingår i: Stem Cell Reports. - : Elsevier BV. - 2213-6711. ; 17:10, s. 2203-2219
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.
  •  
2.
  • Johansson, Pia A, et al. (författare)
  • A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development
  • 2022
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909 .- 1875-9777. ; 29:1, s. 8-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The human forebrain has expanded in size and complexity compared to chimpanzees despite limited changes in protein-coding genes, suggesting that gene expression regulation is an important driver of brain evolution. Here, we identify a KRAB-ZFP transcription factor, ZNF558, that is expressed in human but not chimpanzee forebrain neural progenitor cells. ZNF558 evolved as a suppressor of LINE-1 transposons but has been co-opted to regulate a single target, the mitophagy gene SPATA18. ZNF558 plays a role in mitochondrial homeostasis, and loss-of-function experiments in cerebral organoids suggests that ZNF558 influences developmental timing during early human brain development. Expression of ZNF558 is controlled by the size of a variable number tandem repeat that is longer in chimpanzees compared to humans, and variable in the human population. Thus, this work provides mechanistic insight into how a cis-acting structural variation establishes a regulatory network that affects human brain evolution.
  •  
3.
  • Petry, Serena, et al. (författare)
  • Widespread alterations in microRNA biogenesis in human Huntington’s disease putamen
  • 2022
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Altered microRNA (miRNA) expression is a common feature of Huntington’s disease (HD) and could participate in disease onset and progression. However, little is known about the underlying causes of miRNA disruption in HD. We and others have previously shown that mutant Huntingtin binds to Ago2, a central component of miRNA biogenesis, and disrupts mature miRNA levels. In this study, we sought to determine if miRNA maturation per se was compromised in HD. Towards this end, we characterized major miRNA biogenesis pathway components and miRNA maturation products (pri-miRNA, pre-miRNA, and mature) in human HD (N = 41, Vonsattel grades HD2-4) and healthy control (N = 25) subjects. Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in parallel. We show that Ago2, Drosha, and Dicer were strongly downregulated in human HD at the early stages of the disease. Using a panel of HD-related miRNAs (miR-10b, miR-196b, miR-132, miR-212, miR-127, miR-128), we uncovered various types of maturation defects in the HD brain, the most prominent occurring at the pre-miRNA to mature miRNA maturation step. Consistent with earlier findings, we provide evidence that alterations in autophagy could participate in miRNA maturation defects. Notably, most changes occurred in the striatum, which is more prone to HTT aggregation and neurodegeneration. Likewise, we observed no significant alterations in miRNA biogenesis in human HD cortex and blood, strengthening tissue-specific effects. Overall, these data provide important clues into the underlying mechanisms behind miRNA alterations in HD-susceptible tissues. Further investigations are now required to understand the biological, diagnostic, and therapeutic implications of miRNA/RNAi biogenesis defects in HD and related neurodegenerative disorders.
  •  
4.
  • Pircs, Karolina, et al. (författare)
  • Distinct subcellular autophagy impairments in induced neurons from patients with Huntington's disease
  • 2022
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:9, s. 3035-3057
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in aging humans. To address this, we generated induced neurons (iNs) through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. HD-iNs displayed profound deficits in autophagy, characterised by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in ctrl-iNs, highlighting the importance of wild type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rational for future development of autophagy activation therapies.
  •  
5.
  • Pircs, Karolina, et al. (författare)
  • Hunting out the autophagic problem in Huntington disease
  • 2022
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 18:12, s. 3031-3032
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington disease is an inherited, progressive, incurable neurodegenerative disorder that primarily affects cells in the brain. Although the genetic basis for this condition has been known for nearly 30 years, how this causes disease is still unresolved. Of late there has been increasing evidence suggesting that dysfunction in macroautophagic/autophagic pathways may contribute to cellular dysfunction and death. In our recent work we highlight more precisely how and where this problem might arise in this pathway using directly reprogrammed neurons.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy