SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Piskunov Nikolai professor 1957 ) srt2:(2023)"

Sökning: WFRF:(Piskunov Nikolai professor 1957 ) > (2023)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wehrhahn, Ansgar, 1991- (författare)
  • High Resolution Transmission Spectroscopy of Exoplanets
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A large number of exoplanets has been observed in the last three decades, but still for most of them we know comparatively little about the atmospheres of these distant planets. This is of particular interest as there exist types of planets that don't have an analogy in our own solar system, like hot Jupiters or super Earths. Studying these is instrumental in understanding planet and solar system formation. However just as planets are much smaller than their host stars, so is their signal in the observations. We therefore require high-precision measurements and analysis methods to study them. In this thesis I focus on ground-based high-resolution spectroscopy, as this allows us to use the information encoded in individual absorption lines of the spectrum. I developed tools for the entire process from the initial data reduction, over the analysis of the host star, to the final planet atmosphere characterization.The first tool I developed is PyReduce. It performs data reduction on raw observation images of high-resolution spectrographs by correcting for noise and bias in the data. Of special interest is the new extraction algorithm, which properly accounts for the optical distortions in the spectrograph, and thus improves the quality of the recovered spectrum.The second tool is PySME, which determines the fundamental parameters of the host stars, by modelling the stellar atmosphere and comparing it to the observed spectrum. Accurate stellar parameters help us understand the star-planet system, especially regarding the stellar irradiation on the planet which is important for the temperature. Finally I created ChEATS to determine the chemical components of the planet atmosphere using the cross-correlation method. This method combines all observed spectral lines to detect the faint planet signal in the data. We show that these tools provide excellent analyses in the papers presented here. Additionally PyReduce and PySME are in active use by scientists all over the world. Finally we present an analysis of WASP-107 b, in which we detect H2O and CO in the planet atmosphere.
  •  
2.
  • Dorn, R. J., et al. (författare)
  • CRIRES+ on sky at the ESO Very Large Telescope : Observing the Universe at infrared wavelengths and high spectral resolution
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • The CRyogenic InfraRed Echelle Spectrograph (CRIRES) Upgrade project CRIRES+ extended the capabilities of CRIRES. It transformed this VLT instrument into a cross-dispersed spectrograph to increase the wavelength range that is covered simultaneously by up to a factor of ten. In addition, a new detector focal plane array of three Hawaii 2RG detectors with a 5.3 mu m cutoff wavelength replaced the existing detectors. Amongst many other improvements, a new spectropolarimetric unit was added and the calibration system has been enhanced. The instrument was installed at the VLT on Unit Telescope 3 at the beginning of 2020 and successfully commissioned and verified for science operations during 2021, partly remotely from Europe due to the COVID-19 pandemic. The instrument was subsequently offered to the community from October 2021 onwards. This article describes the performance and capabilities of the upgraded instrument and presents on sky results.
  •  
3.
  • Hahlin, Axel, et al. (författare)
  • Determination of small-scale magnetic fields on Sun-like stars in the near-infrared using CRIRES
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We aim to characterise the small-scale magnetic fields of a sample of 16 Sun-like stars and investigate the capabilities of the newly upgraded near-infrared (NIR) instrument CRIRES+ at the Very Large Telescope in the context of small-scale magnetic field studies. Our targets also had their magnetic fields studied with optical spectra, which allowed us to compare magnetic field properties at different spatial scales on the stellar surface and to contrast small-scale magnetic field measurements at different wavelengths.Methods: We analysed the Zeeman broadening signature for six magnetically sensitive and insensitive Fe I lines in the H-band to measure small-scale magnetic fields on the stellar surfaces of our sample. We used polarised radiative transfer modelling and non-local thermodynamic equilibrium departure coefficients in combination with Markov chain Monte Carlo sampling to determine magnetic field characteristics and non-magnetic stellar parameters. We used two different approaches to describe the small-scale magnetic fields. The first is a two-component model with a single magnetic region and a free magnetic field strength. The second model contains multiple magnetic components with fixed magnetic field strengths.Results: We found average magnetic field strengths ranging from & SIM;0.4 kG down to < 0.1 kG. The results align closely with other results from high-resolution NIR spectrographs, such as SPIRou. It appears that the typical magnetic field strength in the magnetic region is slightly stronger than 1.3 kG, and for most stars in our sample, this strength is between 1 and 2 kG. We also found that the small-scale fields correlate with the large-scale fields and that the small-scale fields are at least ten times stronger than the large-scale fields inferred with Zeeman Doppler imaging. The two- and multi-component models produce systematically different results, as the strong fields from the multi-component model increase the obtained mean magnetic field strength. When comparing our results with the optical measurements of small-scale fields, we found a systematic offset two to three times stronger than fields in the optical results. This discrepancy cannot be explained by uncertainties in stellar parameters. Care should therefore be taken when comparing results obtained at different wavelengths until a clear cause can be established.
  •  
4.
  • Lesjak, F., et al. (författare)
  • Retrieval of the dayside atmosphere of WASP-43b with CRIRES
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 678
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurately estimating the C/O ratio of hot Jupiter atmospheres is a promising pathway towards understanding planet formation and migration, as well as the formation of clouds and the overall atmospheric composition. The atmosphere of the hot Jupiter WASP-43b has been extensively analysed using low-resolution observations with HST and Spitzer, but these previous observations did not cover the K band, which hosts prominent spectral features of major carbon-bearing species such as CO and CH4. As a result, the ability to establish precise constraints on the C/O ratio was limited. Moreover, the planet has not been studied at high spectral resolution, which can provide insights into the atmospheric dynamics. In this study, we present the first high-resolution dayside spectra of WASP-43b with the new CRIRES+ spectrograph. By observing the planet in the K band, we successfully detected the presence of CO and provide evidence for the existence of H2O using the cross-correlation method. This discovery represents the first direct detection of CO in the atmosphere of WASP-43b. Furthermore, we retrieved the temperature-pressure profile, abundances of CO and H2O, and a super-solar C/O ratio of 0.78 by applying a Bayesian retrieval framework to the data. Our findings also shed light on the atmospheric characteristics of WASP-43b. We found no evidence for a cloud deck on the dayside, and recovered a line broadening indicative of an equatorial super-rotation corresponding to a jet with a wind speed of similar to 5kms(-1), matching the results of previous forward models and low-resolution atmospheric retrievals for this planet.
  •  
5.
  • Potravnov, I., et al. (författare)
  • Doppler imaging of a southern ApSi star HD 152564
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 527:4, s. 10376-10387
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of the spectroscopic study of a chemically peculiar star HD 152564. Using medium-resolution (R = 37 000) observations obtained with the high-resolution fibre échelle spectrograph mounted on the South African Large Telescope, we determined atmospheric parameters Teff = 11 950 ± 200 K and log g = 3.6 ± 0.2 dex. Abundance analysis revealed mild deficiency of the light elements and an overabundance of up to ∼2 dex of metals, with the greatest excess for silicon. With these characteristics, HD 152564 is a typical member of the silicon subgroup of Ap stars. The rotational modulation of the light curve and line profiles of HD 152564 are typical for the inhomogeneous surface distribution of elements in its atmosphere. We performed multi-element Doppler imaging of the surface of HD 152564. Abundance maps constructed for He, O, Mg, Si, and Fe revealed the concentration of these elements in a sequence of equatorial spots as well as in the circumpolar rings. The photometric maximum of the light curve coincided with the visibility of two most overabundant silicon spots. Abundances determined from the different ionization stages of Fe and Si show clear evidence for vertical stratification of these elements in the atmosphere of HD 152564. Meanwhile, the horizontal distribution of silicon reconstructed from the lines of different ionization stages and excitation energies appears to be identical with increasing average abundance deeper in atmosphere.
  •  
6.
  • Wehrhahn, Ansgar, et al. (författare)
  • PySME : Spectroscopy Made Easier
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The characterization of exoplanets requires the reliable determination of the fundamental parameters of their host stars. Spectral fitting plays an important role in this process. For the majority of stellar parameters, matching synthetic spectra to the observations provides a robust and unique solution for the fundamental parameters, such as effective temperature, surface gravity, abundances, radial and rotational velocities, among others.Aims: Here, we present a new software package for fitting high-resolution stellar spectra that is easy to use, available for common platforms, and free from commercial licenses. We call it PySME. It is based on the proven Spectroscopy Made Easy package, later referred to as IDL SME or "original" SME.Methods: The IDL (Interactive Data Language) part of the original SME code has been rewritten in Python, but we kept the efficient C++ and FORTRAN code responsible for molecular-ionization equilibrium, opacities, and spectral synthesis. In the process we updated some components of the optimization procedure to offer more flexibility and better analysis of the convergence. The result is a more modern package with the same functionality as the original SME.Results: We applied PySME to a few stars of different spectral types and compared the derived fundamental parameters with the results from IDL SME and other techniques. We show that PySME works at least as well as the original SME.
  •  
7.
  • Yan, F., et al. (författare)
  • CRIRES+ detection of CO emissions lines and temperature inversions on the dayside of WASP-18b and WASP-76b
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Tidskriftsartikel (refereegranskat)abstract
    • The dayside atmospheres of ultra-hot Jupiters (UHJs) are predicted to possess temperature inversion layers with extremely high temperatures at high altitudes. We observed the dayside thermal emission spectra of WASP-18b and WASP-76b with the new CRIRES+ high-resolution spectrograph at near-infrared wavelengths. Using the cross-correlation technique, we detected strong CO emission lines in both planets, which confirms the existence of temperature inversions on their dayside hemispheres. The two planets are the first UHJs orbiting F-type stars with CO emission lines detected; previous detections were mostly for UHJs orbiting A-type stars. Evidence of weak H2O emission signals is also found for both planets. We further applied forward-model retrievals on the detected CO lines and retrieved the temperature-pressure profiles along with the CO volume mixing ratios. The retrieved logarithmic CO mixing ratio of WASP-18b (-2.2(-1.5)(+1.4)) is slightly higher than the value predicted by the self-consistent model assuming solar abundance. For WASP-76b, the retrieved CO mixing ratio (-3.6(-1.6)(+1.8)) is broadly consistent with the value of solar abundance. In addition, we included the equatorial rotation velocity (upsilon(eq)) in the retrieval when analyzing the line profile broadening. The obtained upsilon(eq) is 7.0 +/- 2.9 km s(-1) for WASP-18b and 5.2(-3.0)(+2.5) km s(-1) for WASP-76b, which are consistent with the tidally locked rotational velocities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy