SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pla S) srt2:(2020-2024)"

Sökning: WFRF:(Pla S) > (2020-2024)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Malzbender, K., et al. (författare)
  • Validation, Deployment, and Real-World Implementation of a Modular Toolbox for Alzheimer’s Disease Detection and Dementia Risk Reduction: The AD-RIDDLE Project
  • 2024
  • Ingår i: Journal of Prevention of Alzheimer's Disease. - 2274-5807 .- 2426-0266. ; 11:2, s. 329-338
  • Tidskriftsartikel (refereegranskat)abstract
    • The Real-World Implementation, Deployment, and Validation of Early Detection Tools and Lifestyle Enhancement (AD-RIDDLE) project, recently launched with the support of the EU Innovative Health Initiative (IHI) public-private partnership and UK Research and Innovation (UKRI), aims to develop, test, and deploy a modular toolbox platform that can reduce existing barriers to the timely detection, and therapeutic approaches in Alzheimer’s disease (AD), thus accelerating AD innovation. By focusing on health system and health worker practices, AD-RIDDLE seeks to improve and smooth AD management at and between each key step of the clinical pathway and across the disease continuum, from at-risk asymptomatic stages to early symptomatic ones. This includes innovation and improvement in AD awareness, risk reduction and prevention, detection, diagnosis, and intervention. The 24 partners in the AD-RIDDLE interdisciplinary consortium will develop and test the AD-RIDDLE toolbox platform and its components individually and in combination in six European countries. Expected results from this cross-sectoral research collaboration include tools for earlier detection and accurate diagnosis; validated, novel digital cognitive and blood-based biomarkers; and improved access to individualized preventative interventions (including multimodal interventions and symptomatic/disease-modifying therapies) across diverse populations, within the framework of precision medicine. Overall, AD-RIDDLE toolbox platform will advance management of AD, improving outcomes for patients and their families, and reducing costs.
  •  
6.
  • Almeida, Natália, et al. (författare)
  • Mapping the melanoma plasma proteome (MPP) using single-shot proteomics interfaced with the WiMT database
  • 2021
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 13:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma analysis by mass spectrometry-based proteomics remains a challenge due to its large dynamic range of 10 orders in magnitude. We created a methodology for protein identification known as Wise MS Transfer (WiMT). Melanoma plasma samples from biobank archives were directly analyzed using simple sample preparation. WiMT is based on MS1 features between several MS runs together with custom protein databases for ID generation. This entails a multi-level dynamic protein database with different immunodepletion strategies by applying single-shot proteomics. The highest number of melanoma plasma proteins from undepleted and unfractionated plasma was reported, mapping >1200 proteins from >10,000 protein sequences with confirmed significance scoring. Of these, more than 660 proteins were annotated by WiMT from the resulting ~5800 protein sequences. We could verify 4000 proteins by MS1t analysis from HeLA extracts. The WiMT platform provided an output in which 12 previously well-known candidate markers were identified. We also identified low-abundant proteins with functions related to (i) cell signaling, (ii) immune system regulators, and (iii) proteins regulating folding, sorting, and degradation, as well as (iv) vesicular transport proteins. WiMT holds the potential for use in large-scale screening studies with simple sample preparation, and can lead to the discovery of novel proteins with key melanoma disease functions.
  •  
7.
  •  
8.
  • Betancourt, Lazaro Hiram, et al. (författare)
  • The human melanoma proteome atlas-Defining the molecular pathology
  • 2021
  • Ingår i: Clinical and Translational Medicine. - : Wiley. - 2001-1326. ; 11:7, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • The MM500 study is an initiative to map the protein levels in malignant melanoma tumor samples, focused on in-depth histopathology coupled to proteome characterization. The protein levels and localization were determined for a broad spectrum of diverse, surgically isolated melanoma tumors originating from multiple body locations. More than 15,500 proteoforms were identified by mass spectrometry, from which chromosomal and subcellular localization was annotated within both primary and metastatic melanoma. The data generated by global proteomic experiments covered 72% of the proteins identified in the recently reported high stringency blueprint of the human proteome. This study contributes to the NIH Cancer Moonshot initiative combining detailed histopathological presentation with the molecular characterization for 505 melanoma tumor samples, localized in 26 organs from 232 patients.
  •  
9.
  • Cadenas, J., et al. (författare)
  • Regulation of human oocyte maturation in vivo during the final maturation of follicles
  • 2023
  • Ingår i: Human Reproduction. - : Oxford University Press (OUP). - 0268-1161 .- 1460-2350. ; 38:4, s. 686-700
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY QUESTION: Which substances and signal transduction pathways are potentially active downstream to the effect of FSH and LH in the regulation of human oocyte maturation in vivo? SUMMARY ANSWER: The regulation of human oocyte maturation appears to be a multifactorial process in which several different signal transduction pathways are active. WHAT IS KNOWN ALREADY: Many studies in animal species have provided insight into the mechanisms that govern the final maturation of oocytes. Currently, these studies have identified several different mechanisms downstream to the effects of FSH and LH. Some of the identified mechanisms include the regulation of cAMP/cGMP levels in oocytes involving C-type natriuretic peptide (CNP), effects of epidermal growth factor (EGF)-related peptides such as amphiregulin (AREG) and/or epiregulin (EREG), effect of TGF-β family members including growth differentiation factor 9 (GDF9) and morphogenetic protein 15 (BMP15), activins/inhibins, follicular fluid meiosis activating sterol (FF-MAS), the growth factor midkine (MDK), and several others. However, to what extent these pathways and mechanisms are active in humans in vivo is unknown. STUDY DESIGN, SIZE, DURATION: This prospective cohort study included 50 women undergoing fertility treatment in a standard antagonist protocol at a university hospital affiliated fertility clinic in 2016-2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: We evaluated the substances and signalling pathways potentially affecting human oocyte maturation in follicular fluid (FF) and granulosa cells (GCs) collected at five time points during the final maturation of follicles. Using ELISA measurement and proteomic profiling of FF and whole genome gene expression in GC, the following substances and their signal transduction pathways were collectively evaluated: CNP, the EGF family, inhibin-A, inhibin-B, activins, FF-MAS, MDK, GDF9, and BMP15. MAIN RESULTS AND THE ROLE OF CHANCE: All the evaluated substances and signal transduction pathways are potentially active in the regulation of human oocyte maturation in vivo except for GDF9/BMP15 signalling. In particular, AREG, inhibins, and MDK were significantly upregulated during the first 12-17 h after initiating the final maturation of follicles and were measured at significantly higher concentrations than previously reported. Additionally, the genes regulating FF-MAS synthesis and metabolism were significantly controlled in favour of accumulation during the first 12-17 h. In contrast, concentrations of CNP were low and did not change during the process of final maturation of follicles, and concentrations of GDF9 and BMP15 were much lower than reported in small antral follicles, suggesting a less pronounced influence from these substances. LARGE SCALE DATA: None. LIMITATIONS, REASONS FOR CAUTION: Although GC and cumulus cells have many similar features, it is a limitation of the current study that information for the corresponding cumulus cells is not available. However, we seldom recovered a cumulus-oocyte complex during the follicle aspiration from 0 to 32 h. WIDER IMPLICATIONS OF THE FINDINGS: Delineating the mechanisms governing the regulation of human oocyte maturation in vivo advances the possibility of developing a platform for IVM that, as for most other mammalian species, results in healthy offspring with good efficacy. Mimicking the intrafollicular conditions during oocyte maturation in vivo in small culture droplets during IVM may enhance oocyte nuclear and cytoplasmic maturation. The primary outlook for such a method is, in the context of fertility preservation, to augment the chances of achieving biological children after a cancer treatment by subjecting oocytes from small antral follicles to IVM. Provided that aspiration of oocytes from small antral follicles in vivo can be developed with good efficacy, IVM may be applied to infertile patients on a larger scale and can provide a cheap alternative to conventional IVF treatment with ovarian stimulation. Successful IVM has the potential to change current established techniques for infertility treatment. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the University Hospital of Copenhagen, Rigshospitalet, the Independent Research Fund Denmark (grant number 0134-00448), and the Interregional EU-sponsored ReproUnion network. There are no conflicts of interest to be declared.
  •  
10.
  • Collij, L. E., et al. (författare)
  • The amyloid imaging for the prevention of Alzheimer's disease consortium: A European collaboration with global impact
  • 2023
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundAmyloid-beta (A beta) accumulation is considered the earliest pathological change in Alzheimer's disease (AD). The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) consortium is a collaborative European framework across European Federation of Pharmaceutical Industries Associations (EFPIA), academic, and 'Small and Medium-sized enterprises' (SME) partners aiming to provide evidence on the clinical utility and cost-effectiveness of Positron Emission Tomography (PET) imaging in diagnostic work-up of AD and to support clinical trial design by developing optimal quantitative methodology in an early AD population. The AMYPAD studiesIn the Diagnostic and Patient Management Study (DPMS), 844 participants from eight centres across three clinical subgroups (245 subjective cognitive decline, 342 mild cognitive impairment, and 258 dementia) were included. The Prognostic and Natural History Study (PNHS) recruited pre-dementia subjects across 11 European parent cohorts (PCs). Approximately 1600 unique subjects with historical and prospective data were collected within this study. PET acquisition with [F-18]flutemetamol or [F-18]florbetaben radiotracers was performed and quantified using the Centiloid (CL) method. ResultsAMYPAD has significantly contributed to the AD field by furthering our understanding of amyloid deposition in the brain and the optimal methodology to measure this process. Main contributions so far include the validation of the dual-time window acquisition protocol to derive the fully quantitative non-displaceable binding potential (BPND), assess the value of this metric in the context of clinical trials, improve PET-sensitivity to emerging A beta burden and utilize its available regional information, establish the quantitative accuracy of the Centiloid method across tracers and support implementation of quantitative amyloid-PET measures in the clinical routine. Future stepsThe AMYPAD consortium has succeeded in recruiting and following a large number of prospective subjects and setting up a collaborative framework to integrate data across European PCs. Efforts are currently ongoing in collaboration with ARIDHIA and ADDI to harmonize, integrate, and curate all available clinical data from the PNHS PCs, which will become openly accessible to the wider scientific community.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy