SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pourazar Jamshid) srt2:(2000-2004)"

Search: WFRF:(Pourazar Jamshid) > (2000-2004)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bosson, Jenny, et al. (author)
  • Ozone-induced bronchial epithelial cytokine expression differs between healthy and asthmatic subjects
  • 2003
  • In: Clinical and Experimental Allergy. - : Wiley. - 0954-7894 .- 1365-2222. ; 33:6, s. 777-782
  • Journal article (peer-reviewed)abstract
    • Background Ozone (O3) is a common air pollutant associated with adverse health effects. Asthmatics have been suggested to be a particularly sensitive group. Objective This study evaluated whether bronchial epithelial cytokine expression would differ between healthy and allergic asthmatics after ozone exposure, representing an explanatory model for differences in susceptibility. Methods Healthy and mild allergic asthmatic subjects (using only inhaled β2-agonists prn) were exposed for 2 h in blinded and randomized sequence to 0.2 ppm of O3 and filtered air. Bronchoscopy with bronchial mucosal biopsies was performed 6 h after exposure. Biopsies were embedded in GMA and stained with mAbs for epithelial expression of IL-4, IL-5, IL-6, IL-8, IL-10, TNF-α, GRO-α, granulocyte–macrophage colony-stimulating factor (GM–CSF), fractalkine and ENA-78. Results When comparing the two groups at baseline, the asthmatic subjects showed a significantly higher expression of IL-4 and IL-5. After O3 exposure the epithelial expression of IL-5, GM–CSF, ENA-78 and IL-8 increased significantly in asthmatics, as compared to healthy subjects. Conclusion The present study confirms a difference in epithelial cytokine expression between mild atopic asthmatics and healthy controls, as well as a differential epithelial cytokine response to O3. This O3-induced upregulation of T helper type 2 (Th2)-related cytokines and neutrophil chemoattractants shown in the asthmatic group may contribute to a subsequent worsening of the airway inflammation, and help to explain their differential sensitivity to O3 pollution episodes.
  •  
2.
  • Nordenhäll, C, et al. (author)
  • Airway inflammation following exposure to diesel exhaust : a study of time kinetics using induced sputum
  • 2000
  • In: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 15:6, s. 1046-1051
  • Journal article (peer-reviewed)abstract
    • The adverse health effects of particulate matter pollution are of increasing concern. In a recent bronchoscopic study in healthy volunteers, pronounced airway inflammation was detected following exposure to diesel exhaust (DE). The present study was conducted in order to evaluate the time kinetics of the inflammatory response following exposure to DE using induced sputum from healthy volunteers. Fifteen healthy nonsmoking volunteers were exposed to DE particles with a 50% cut-off aerodynamic diameter of 10 microm 300 microg x m(-3) and air for 1 h on two separate occasions. Sputum induction with hypertonic saline was performed 6 and 24 h after each exposure. Analyses of sputum differential cell counts and soluble protein concentrations were performed. Six hours after exposure to DE, a significant increase was found in the percentage of sputum neutrophils (37.7 versus 26.2% p=0.002) together with increases in the concentrations of interleukin-6 (12.0 versus 6.3 pg x mL(-1), p=0.006) and methylhistamine (0.11 versus 0.12 microg x L(-1), p=0.024). Irrespective of exposure, a significant increase was found in the percentage of sputum neutrophils at 24 as compared to 6 h, indicating that the procedure of sputum induction itself may change the composition of sputum. This study demonstrates that exposure to diesel exhaust induces inflammatory response in healthy human airways, represented by an early increase in interleukin-6 and methylhistamine concentration and the percentage of neutrophils. Induced sputum provides a safe tool for the investigation of the inflammatory effects of diesel exhaust, but care must be taken when interpreting results from repeated sputum inductions.
  •  
3.
  • Nordenhäll, C, et al. (author)
  • Diesel exhaust enhances airway responsiveness in asthmatic subjects
  • 2001
  • In: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 17:5, s. 909-915
  • Journal article (peer-reviewed)abstract
    • Particulate matter (PM) pollution has been associated with negative health effects, including exacerbations of asthma following exposure to PM peaks. The aim of the present study was to investigate the effects of short-term exposure to diesel exhaust (DE) in asthmatics, by specifically addressing the effects on airway hyperresponsiveness, lung function and airway inflammation. Fourteen nonsmoking, atopic asthmatics with stable disease, on continuous treatment with inhaled corticosteroids, were included. All were hyperresponsive to methacholine. Each subject was exposed to DE (particles with a 50% cut-off aerodynamic diameter of 10 microm (PM10) 300 microg x m(-3)) and air during 1 h on two separate occasions. Lung function was measured before and immediately after the exposures. Sputum induction was performed 6 h, and methacholine inhalation test 24 h, after each exposure. Exposure to DE was associated with a significant increase in the degree of hyperresponsiveness, as compared to after air, of 0.97 doubling concentrations at 24 h after exposure (p < 0.001). DE also induced a significant increase in airway resistance (p=0.004) and in sputum levels of interleukin (IL)-6 (p=0.048). No changes were detected in sputum levels of methyl-histamine, eosinophil cationic protein, myeloperoxidase and IL-8. This study indicated that short-term exposure to diesel exhaust, equal to high ambient levels of particulate matter, is associated with adverse effects in asthmatic airways, even in the presence of inhaled corticosteroid therapy. The increase in airway responsiveness may provide an important link to epidemiological findings of exacerbations of asthma following exposure to particulate matter.
  •  
4.
  • Pourazar, Jamshid, et al. (author)
  • Diesel exhaust exposure enhances the expression of IL-13 in the bronchial epithelium of healthy subjects.
  • 2004
  • In: Respiratory Medicine. - : Elsevier BV. - 0954-6111 .- 1532-3064. ; 98:9, s. 821-825
  • Journal article (peer-reviewed)abstract
    • Epidemiological studies have demonstrated adverse health effects of environmental pollution. Diesel exhaust (DE) is an important contributor to ambient particulate matter pollution. DE exposure has been shown to induce a pronounced inflammatory response in the airways, with an enhanced epithelial expression of IL-8, and Gro-α in healthy subjects. The present investigation was aimed to further characterise the epithelial response to DE in vivo, with particular reference to possible TH2 response, in non-atopic healthy subjects. To determine this response, 15 healthy, non-atopic non-smoking subjects with normal lung function were exposed to DE (PM10 300 μg/m3) and filtered air during 1 h on two separate randomised occasions. Bronchoscopy sampling of bronchial mucosal biopsies was performed 6 h after exposure. Immunohistochemical staining were performed using mAb for IL-10, IL-13 and IL-18 expression. DE exposure induced a significant increase in the expression of IL-13 in the bronchial epithelium cells, 2.1 (1.35–4.88) Md (Q1–Q3) vs. air 0.94 (0.53–1.23); P=0.009. No significant changes were seen in IL-10 and IL-18 expression. This finding suggests an TH2-inflammatory response in the airways of non-atopic healthy individuals.
  •  
5.
  •  
6.
  • Stenfors, Nikolai, et al. (author)
  • Effect of ozone on bronchial mucosal inflammation in asthmatic and healthy subjects
  • 2002
  • In: Respiratory Medicine. - : Saunders Elsevier. - 0954-6111 .- 1532-3064. ; 96:5, s. 352-358
  • Journal article (peer-reviewed)abstract
    • Epidemiological studies suggestthat asthmatics are more affected by ozone than healthy people. This study tested three hypotheses (1) that short-term exposure to ozone induces inflammatory cell increases and up-regulation of vascular adhesion molecules in airway lavages and bronchial tissue 6 h after ozone exposure in healthy subjects; (2) these responses are exaggerated in subjects with mild allergic asthma; (3) ozone exacerbates pre-existent allergic airways inflammation. We exposed 15 mild asthmatic and 15 healthy subjects to 0.2 ppm of ozone or filtered air for 2 h on two separate occasions. Airway lavages and bronchial biopsies were obtained 6 h post-challenge. We found that ozone induced similar increases in bronchial wash neutrophils in both groups, although the neutrophil increase in the asthmatic group was on top of an elevated baseline. In healthy subjects, ozone exposure increased the expression of the vascular endothelial adhesion molecules P-selectin and ICAM- 1, as well as increasing tissue neutrophil and mast cell numbers. The asthmatics showed allergic airways inflammation at baseline but ozone did not aggravate this at the investigated time point. At 6 h post-ozone-exposure, we found no evidence that mild asthmatics were more responsive than healthy to ozone in terms of exaggerated neutrophil recruitment or exacerbation of pre-existing allergic inflammation. Further work is needed to assess the possibility of a difference in time kinetics between healthy and asthmatic subjects in their response to ozone.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view