SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pullerits Tonu) srt2:(2022)"

Sökning: WFRF:(Pullerits Tonu) > (2022)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Yang, et al. (författare)
  • Inorganic ligands-mediated hole attraction and surface structuralreorganization in InP/ZnS QD photocatalysts studied via ultrafast visibleand midinfrared spectroscopies
  • 2022
  • Ingår i: SCIENCE CHINA Materials. - : Springer Science and Business Media LLC. - 2095-8226 .- 2199-4501. ; 65:9, s. 2529-2539
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinduced carrier dynamical processes dominate the optical excitation properties of photocatalysts and further determine the photocatalytic performance. In addition, as the electrons generally possess a faster transfer rate than holes, hole transfer and accumulation are critical, and they play the key efficiency-limiting step during the photocatalytic process. Therefore, a comprehensive understanding of the dynamics of photogenerated holes and their determining factors in the photocatalytic system is highly essential to rationalize the full catalytic mechanism and develop highly efficient photocatalysts, which have not yet been revealed. In this work, the photoinduced charge carrier dynamics in InP/ZnS quantum dots (QDs) capped with long-chain L-typed ligands (oleylamine) and inorganic ligands (sulfide ion (S2−)) were explored. Time-resolved photoluminescence and femtosecond transient-absorption spectroscopy unambiguously confirmed the ultrafast hole transfer from the InP core to S2− ligands. Moreover, by probing the bleach of vibrational stretching of the ligands with transient midinfrared absorption spectroscopy, the hole transfer time was determined to be 4.2 ps. The injected holes are long-lived at the S2− ligands (>4.5 ns), and they can remove electrostatically attached surfactants to compensate for the spatial charge redistribution. Finally, compared with other inorganic ligands such as Cl− and PO43−, S2− balances the ionic radii and net charge to ensure the optimal condition for charge transfer. Such observation rationalizes the excellent photocatalytic H2 evolution (213.6 µmol mg−1 within 10 h) in InP/ZnS QDs capped with S2− compared with those capped with other ligands and elucidates the role of surface ligands in the photocatalytic activity of colloidal QDs.
  •  
2.
  • Pan, Qinying, et al. (författare)
  • Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhenium(I)-carbonyl-diimine complexes have emerged as promising photocatalysts for carbon dioxide reduction with covalent organic frameworks recognized as perfect sensitizers and scaffold support. Such Re complexes/covalent organic frameworks hybrid catalysts have demonstrated high carbon dioxide reduction activities but with strong excitation energy-dependence. In this paper, we rationalize this behavior by the excitation energy-dependent pathways of internal photo-induced charge transfer studied via transient optical spectroscopies and time-dependent density-functional theory calculation. Under band-edge excitation, the excited electrons are quickly injected from covalent organic frameworks moiety into catalytic RheniumI center within picosecond but followed by fast backward geminate recombination. While under excitation with high-energy photon, the injected electrons are located at high-energy levels in RheniumI centers with longer lifetime. Besides those injected electrons to RheniumI center, there still remain some long-lived electrons in covalent organic frameworks moiety which is transferred back from RheniumI. This facilitates the two-electron reaction of carbon dioxide conversion to carbon monoxide.
  •  
3.
  • Wang, Zhengjun, et al. (författare)
  • Beating signals in CdSe quantum dots measured by low-temperature 2D spectroscopy
  • 2022
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 157:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances in ultrafast spectroscopy can provide access to dynamics involving nontrivial quantum correlations and their evolutions. In coherent 2D spectroscopy, the oscillatory time dependence of a signal is a signature of such quantum dynamics. Here, we study such beating signals in electronic coherent 2D spectroscopy of CdSe quantum dots (CdSe QDs) at 77 K. The beating signals are analyzed in terms of their positive and negative Fourier components. We conclude that the beatings originate from coherent LO-phonons of CdSe QDs. No evidence for the QD size dependence of the LO-phonon frequency was identified.
  •  
4.
  • Wang, Zhengjun, et al. (författare)
  • Excited States and Their Dynamics in CdSe Quantum Dots Studied by Two-Color 2D Spectroscopy
  • 2022
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 13:5, s. 1266-1271
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum dots (QDs) form a promising family of nanomaterials for various applications in optoelectronics. Understanding the details of the excited-state dynamics in QDs is vital for optimizing their function. We apply two-color 2D electronic spectroscopy to investigate CdSe QDs at 77 K within a broad spectral range. Analysis of the electronic dynamics during the population time allows us to identify the details of the excitation pathways. The initially excited high-energy electrons relax with the time constant of 100 fs. Simultaneously, the states at the band edge rise within 700 fs. Remarkably, the excited-state absorption is rising with a very similar time constant of 700 fs. This makes us reconsider the earlier interpretation of the excited-state absorption as the signature of a long-lived trap state. Instead, we propose that this signal originates from the excitation of the electrons that have arrived in the conduction-band edge.
  •  
5.
  • Wu, Yanqing, et al. (författare)
  • Organo-Metal Halide Scintillator with Weak Thermal Quenching Up to 200 °C
  • 2022
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 13:25, s. 5794-5800
  • Tidskriftsartikel (refereegranskat)abstract
    • The prominent thermal quenching (TQ) effect of organic-inorganic metal halides limits their applications for lighting and imaging. Herein, we report an organo-metal halide scintillator (TTPhP)2MnCl4(TTPhP+= tetraphenylphosphonium cation), which exhibits a weak TQ effect up to 200 °C under ultraviolet-visible light (efficiency loss of 5.5%) and X-ray radiation (efficiency loss of 37%). The light yield of the (TTPhP)2MnCl4scintillator (37 »000 photons MeV-1at 200 °C) under X-ray radiation is >2 times that of the commercial scintillator LuAG:Ce (15 »000 photons MeV-1at 200 °C). The microscopic mechanism of the weak TQ effect is demonstrated to be the scintillator having the ability to compensate for the emission losses from trapped charges and the large Mn-Mn distance (10.233 Å) suppressing nonradiative recombination at high temperatures. We further demonstrate the applications of (TTPhP)2MnCl4as high-power white-light-emitting diodes operated at currents of ≤300 mA and X-ray imaging at 200 °C with a high spatial resolution.
  •  
6.
  • Xie, Jiaqi, et al. (författare)
  • N-doping of nonfullerene bulk-heterojunction organic solar cells strengthens photogeneration and exciton dissociation
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 10:36, s. 18845-18855
  • Tidskriftsartikel (refereegranskat)abstract
    • N-type doping of the bulk-heterojunction layer in nonfullerene organic solar cells allows to effectively ameliorate inferior electron transportation by filling traps and optimizing electron pathways, leading to a better balance of charge transport in device. This mechanism, however, provides an incomplete understanding of the stronger photogeneration, long-lived excitons and simultaneously increased short-circuit current density (JSC) and open-circuit voltage (VOC) that also benefit from the n-doping. Herein we investigate how molecular n-dopant impacts the optical characteristics, intermolecular packing behavior, charge carrier dynamics and photovoltaic performance in the nonfullerene-based blend. When incorporating a prototypical n-type dopant N-DMBI into a benchmark PM6:Y6 blend, the crystallization of PM6/Y6 is facilitated and the crystal coherence length is elongated, which is correlated with the optical absorbance enhancement. N-doping is unveiled to prolong exciton lifetime by retarding germinate recombination (GR) both at donor/acceptor (D/A) interfaces and within constituent domains by dilating interspace, reducing trap states and decreasing exciton binding energy. Despite slower interfacial charge transfer across the enlarged D/A interspace due to dopant intercalation, exciton dissociation remains highly effective due to the impeded interfacial GR. Consequently, the champion inverted cell at an optimal N-DMBI content delivers a decent efficiency of 15.34%, which is among the highest of the state-of-the art analogous PM6:Y6-based binary cells. Such improvement is largely ascribed to the concurrent increase of JSC (up to 26.41 mA cm−2) and VOC (up to 0.86 V) in comparison to the undoped device.
  •  
7.
  • Yu, Shuang, et al. (författare)
  • Imidazole additives in 2D halide perovskites : impacts of -CN versus -CH3 substituents reveal the mediation of crystal growth by phase buffering
  • 2022
  • Ingår i: Energy and Environmental Science. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 15:8, s. 3321-3330
  • Tidskriftsartikel (refereegranskat)abstract
    • The unique sandwich structure and favorable crystallization kinetics have endowed two-dimensional (2D) halide perovskites with excellent ambient stability and facile film formation compared to those of their three-dimensional counterparts. However, the heterogeneous crystallization of multiple n-value phases during solution-casting of 2D perovskite thin films results in random and disordered crystalline alignment in conjunction with numerous lattice defects, all of which ultimately impair the device performance. Herein we demonstrate that highly ordered lattice arrangements in 2D lead halide perovskites, exemplified as a paradigm phenylethylamine (PEA) spacer, can be achieved using the 4,5-dicyanoimidazole (DCI) additive without any post-treatment. Electrostatic potential distribution mapping and X-ray photoelectron spectroscopy collectively confirm the Lewis acid-base interaction between -CN− units in DCI and Pb2+, which is conducive to homogeneous nucleation during perovskite crystallization. A sequence of in situ grazing-incident wide-angle X-ray scattering and high-resolution transmission electron microscopy characterization unravel the epitaxial growth of multi-phases that gradually buffer the internal lattice strain and consequently regulate the lattice orientation, which markedly leads to a reduction of trap density and a prolongation of carrier lifetime. The resulting planar solar cells based on 2D PEA2MA3Pb4I13 (n = 4) deliver an outstanding efficiency of ∼17.0% along with excellent operational stability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy