SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Purg Miha) srt2:(2017)"

Sökning: WFRF:(Purg Miha) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amrein, Beat Anton, et al. (författare)
  • CADEE : Computer-Aided Directed Evolution of Enzymes
  • 2017
  • Ingår i: IUCrJ. - 2052-2525. ; 4:1, s. 50-64
  • Tidskriftsartikel (refereegranskat)abstract
    • The tremendous interest in enzymes as biocatalysts has led to extensive work in enzyme engineering, as well as associated methodology development. Here, a new framework for computer-aided directed evolution of enzymes (CADEE) is presented which allows a drastic reduction in the time necessary to prepare and analyze in silico semi-automated directed evolution of enzymes. A pedagogical example of the application of CADEE to a real biological system is also presented in order to illustrate the CADEE workflow.
  •  
2.
  • Purg, Miha, et al. (författare)
  • Similar Active Sites and Mechanisms Do Not Lead to Cross-Promiscuity in Organophosphate Hydrolysis : Implications for Biotherapeutic Engineering
  • 2017
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 139:48, s. 17533-17546
  • Tidskriftsartikel (refereegranskat)abstract
    • Organophosphate hydrolases are proficient catalysts of the breakdown of neurotoxic organophosphates and have great potential as both biotherapeutics for treating acute organophosphate toxicity and as bioremediation agents. However, proficient organophosphatases such as serum paraoxonase 1 (PON1) and the organophosphate-hydrolyzing lactonase SsoPox are unable to hydrolyze bulkyorganophosphates with challenging leaving groups such as diisopropyl fluorophosphate (DFP) or venomous agent X, creating a major challenge for enzyme design. Curiously, despite their mutually exclusive substrate specificities, PON1 and diisopropyl fluorophosphatase (DFPase) have essentially identical active sites and tertiary structures. In the present work, we use empirical valence bond simulations to probe the catalytic mechanism of DFPase as well as temperature, pH, and mutational effects, demonstrating that DFPase and PON1 also likely utilize identical catalytic mechanisms to hydrolyze their respective substrates. However, detailed examination of both static structures and dynamical simulations demonstrates subtle but significant differences in the electrostatic properties and solvent penetration of the two active sites and, most critically, the role of residues that make no direct contact with either substrate in acting as "specificity switches" between the two enzymes. Specifically, we demonstrate that key residues that are structurally and functionally critical for the paraoxonase activity of PON1 prevent it from being able to hydrolyze DFP with its fluoride leaving group. These insights expand our understanding of the drivers of the evolution of divergent substrate specificity in enzymes with identical active sites and guide the future design of organophosphate hydrolases that hydrolyze compounds with challenging leaving groups.
  •  
3.
  • Zhan, Shaoqi, et al. (författare)
  • Capturing the Role of Explicit Solvent in the Dimerization of Ru-V(bda) Water Oxidation Catalysts
  • 2017
  • Ingår i: Angewandte Chemie International Edition. - : Wiley-VCH Verlagsgesellschaft. - 1433-7851 .- 1521-3773. ; 56:24, s. 6962-6965
  • Tidskriftsartikel (refereegranskat)abstract
    • A ground-breaking empirical valence bond study for a soluble transition-metal complex is presented. The full reaction of catalyst monomers approaching and reacting in the Ru-V oxidation state were studied. Analysis of the solvation shell in the reactant and along the reaction coordinate revealed that the oxo itself is hydrophobic, which adds a significant driving force to form the dimer. The effect of the solvent on the reaction between the prereactive dimer and the product was small. The solvent seems to lower the barrier for the isoquinoline (isoq) complex while it is increased for pyridines. By comparing the reaction in the gas phase and solution, the proposed p-stacking interaction of the isoq ligands is found to be entirely driven by the water medium.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy