SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Puts Isolde) srt2:(2023)"

Sökning: WFRF:(Puts Isolde) > (2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Callisto Puts, Isolde, et al. (författare)
  • Contrasting impacts of warming and browning on periphyton
  • 2023
  • Ingår i: Limnology and Oceanography Letters. - : John Wiley & Sons. - 2378-2242. ; 8:4, s. 628-638
  • Tidskriftsartikel (refereegranskat)abstract
    • We tested interactive effects of warming (+2°C) and browning on periphyton accrual and pigment composition when grown on a synthetic substrate (plastic strips) in the euphotic zone of 16 experimental ponds. We found that increased colored dissolved organic matter (cDOM) and associated nutrients alone, or in combination with warming, resulted in a substantially enhanced biomass accrual of periphyton, and a comparatively smaller increase in phytoplankton. This illustrates that periphyton is capable of using nutrients associated with cDOM, and by this may affect nutrient availability for phytoplankton. However, warming weakened the positive impact of browning on periphyton accrual, possibly by thermal compensation inferred from altered pigment composition, and/or changes in community composition. Our results illustrate multiple impacts of climate change on algal growth, which could have implications for productivity and consumer resource use, especially in shallow areas in northern lakes.
  •  
2.
  • Koizumi, Shuntaro, 1993-, et al. (författare)
  • Experimental warming and browning influence autumnal pelagic and benthic invertebrate biomass and community structure
  • 2023
  • Ingår i: Freshwater Biology. - : John Wiley & Sons. - 0046-5070 .- 1365-2427. ; 68:7, s. 1224-1237
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, lakes are warming and browning with ongoing climate change. These changes significantly impact a lake's biogeochemical properties and all organisms, including invertebrate consumers. The effects of these changes are essential to understand, especially during critical periods after and before the growing season, that is, autumn and spring, which can determine the composition of the invertebrate consumer community.In this study, we used a large-scale experimental pond system to test the combined effect of warming (+3°C) and increased input of terrestrial and coloured dissolved organic carbon (gradient of 1.6–8.8 mg/L in the ambient and 1.6–9.3 mg/L in the warm)—which causes browning—on zooplankton and benthic macroinvertebrate biomass and composition during the autumn and the following spring.Total zooplankton biomass decreased with warming and increased with browning, while total zoobenthos did not respond to either treatment. Warming and browning throughout the autumn had no overall interactive effects on zooplankton or zoobenthos. Autumnal warming decreased total pelagic consumer biomass, caused by a decrease in both Rotifera and Copepoda. In contrast, there was no effect on overall benthic consumer biomass, with only Asellus sp. biomass showing a negative response to warming. An autumnal increase in dissolved organic carbon led to increased total pelagic consumer biomass, which was related to increases in Daphnia sp. biomass but did not affect zoobenthos biomass. While we expected zooplankton and zoobenthos biomass to follow responses in primary and bacterial production to treatments, we did not find any relationship between consumer groups and these estimates of resource production.Our results suggest that consumer responses to warming and browning during autumn may lead to less overarching general changes in consumer biomass, and responses are mostly taxon-specific.This study gives novel insights into the effects of warming and browning on consumer biomass during autumn and spring and increases the understanding of the effects of climate change on invertebrate community biomass in the different habitats.
  •  
3.
  • Puts, Isolde C., et al. (författare)
  • Browning affects pelagic productivity in northern lakes by surface water warming and carbon fertilization
  • 2023
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 29:2, s. 375-390
  • Tidskriftsartikel (refereegranskat)abstract
    • Global change impacts important environmental drivers for pelagic gross primary production (GPP) in northern lakes, such as temperature, light, nutrient, and inorganic carbon availability. Separate and/or synergistic impacts of these environmental drivers on pelagic GPP remain largely unresolved. Here, we assess key drivers of pelagic GPP by combining detailed depth profiles of summer pelagic GPP with environmental and climatic data across 45 small and shallow lakes across northern Sweden (20 boreal, 6 subarctic, and 19 arctic lakes). We found that across lakes summer pelagic GPP was strongest associated with lake water temperatures, lake carbon dioxide (CO2) concentrations impacted by lake water pH, and further moderated by dissolved organic carbon (DOC) concentrations influencing light and nutrient conditions. We further used this dataset to assess the extent of additional DOC-induced warming of epilimnia (here named internal warming), which was especially pronounced in shallow lakes (decreasing 0.96°C for every decreasing m in average lake depth) and increased with higher concentrations of DOC. Additionally, the total pools and relative proportion of dissolved inorganic carbon and DOC, further influenced pelagic GPP with drivers differing slightly among the boreal, subarctic and Arctic biomes. Our study provides novel insights in that global change affects pelagic GPP in northern lakes not only by modifying the organic carbon cycle and light and nutrient conditions, but also through modifications of inorganic carbon supply and temperature. Considering the large-scale impacts and similarities of global warming, browning and recovery from acidification of lakes at higher latitudes throughout the northern hemisphere, these changes are likely to operate on a global scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy