SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qian X) srt2:(2020-2023)"

Sökning: WFRF:(Qian X) > (2020-2023)

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  •  
3.
  • Kristan, M., et al. (författare)
  • The Eighth Visual Object Tracking VOT2020 Challenge Results
  • 2020
  • Ingår i: Computer Vision. - Cham : Springer International Publishing. - 9783030682378 ; , s. 547-601
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2020 is the eighth annual tracker benchmarking activity organized by the VOT initiative. Results of 58 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The VOT2020 challenge was composed of five sub-challenges focusing on different tracking domains: (i) VOT-ST2020 challenge focused on short-term tracking in RGB, (ii) VOT-RT2020 challenge focused on “real-time” short-term tracking in RGB, (iii) VOT-LT2020 focused on long-term tracking namely coping with target disappearance and reappearance, (iv) VOT-RGBT2020 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2020 challenge focused on long-term tracking in RGB and depth imagery. Only the VOT-ST2020 datasets were refreshed. A significant novelty is introduction of a new VOT short-term tracking evaluation methodology, and introduction of segmentation ground truth in the VOT-ST2020 challenge – bounding boxes will no longer be used in the VOT-ST challenges. A new VOT Python toolkit that implements all these novelites was introduced. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net ). 
  •  
4.
  • Wang, Y., et al. (författare)
  • Erythropoietin prevents necrotizing enterocolitis in very preterm infants: a randomized controlled trial
  • 2020
  • Ingår i: Journal of Translational Medicine. - : Springer Science and Business Media LLC. - 1479-5876. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Necrotizing enterocolitis (NEC) is one of the most severe complications in very preterm infants, but there are currently no accepted methods to prevent NEC. Studies have shown that erythropoietin (EPO) has the potential to prevent NEC or improve outcomes of preterm NEC. This study aimed to determine whether recombinant human EPO (rhEPO) could protect against NEC in very preterm infants. Methods: The study was a prospective randomized clinical trial performed among four NICU centers. A total of 1327 preterm infants with gestational age <= 32 weeks were admitted to the centers, and 42 infants were excluded leaving 1285 eligible infants to be randomized to the rhEPO or control group. Infants in the rhEPO group were given 500 IU/kg rhEPO intravenously every other day for 2 weeks, while the control group was given the same volume of saline. The primary outcome was the incidence of NEC in very preterm infants at 36 weeks of corrected gestational age. Results: A total of 1285 infants were analyzed at 36 weeks of corrected age for the incidence of NEC. rhEPO treatment significantly decreased the incidence of NEC (stage I, II and III) (12.0% vs. 17.1%, p = 0.010), especially confirmed NEC (stage II and III) (3.0% vs. 5.4%, p = 0.027). Meanwhile, rhEPO treatment significantly reduced the number of red blood cells transfusion in the confirmed NEC cases (1.2 +/- 0.4 vs. 2.7 +/- 1.0, p = 0.004). Subgroup analyses showed that rhEPO treatment significantly decreased the incidence of confirmed NEC at gestational age < 28 weeks (p = 0.019), and the incidence of all stages NEC in preterm infants with hemoglobin < 90 g/l (p = 0.000) and 5 min Apgar score > 5 (p = 0.028). Conclusion: Repeated low-dose rhEPO treatment is beneficial against NEC in very preterm infants.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Zeng, P., et al. (författare)
  • Identification and fine mapping of qGR6.2, a novel locus controlling rice seed germination under salt stress
  • 2021
  • Ingår i: Bmc Plant Biology. - : Springer Science and Business Media LLC. - 1471-2229. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundRice growth is frequently affected by salinity. When exposed to high salinity, rice seed germination and seedling establishment are significantly inhibited. With the promotion of direct-seeding in Asia, improving rice seed germination under salt stress is crucial for breeding.ResultsIn this study, an indica landrace Wujiaozhan (WJZ) was identified with high germinability under salt stress. A BC1F2 population derived from the crossing WJZ/Nip (japonica, Nipponbare)//Nip, was used to quantitative trait loci (QTL) mapping for the seed germination rate (GR) and germination index (GI) under H2O and 300mM NaCl conditions. A total of 13 QTLs were identified, i.e. ten QTLs under H2O conditions and nine QTLs under salt conditions. Six QTLs, qGR6.1, qGR8.1, qGR8.2, qGR10.1, qGR10.2 and qGI10.1 were simultaneously identified under two conditions. Under salt conditions, three QTLs, qGR6.2, qGR10.1 and qGR10.2 for GR were identified at different time points during seed germination, which shared the same chromosomal region with qGI6.2, qGI10.1 and qGI10.2 for GI respectively. The qGR6.2 accounted for more than 20% of phenotypic variation under salt stress, as the major effective QTL. Furthermore, qGR6.2 was verified via the BC2F2 population and narrowed to a 65.9-kb region with eleven candidate genes predicted. Based on the microarray database, five candidate genes were found with high transcript abundances at the seed germination stage, of which LOC_Os06g10650 and LOC_Os06g10710 were differentially expressed after seed imbibition. RT-qPCR results showed the expression of LOC_Os06g10650 was significantly up-regulated in two parents with higher levels in WJZ than Nip during seed germination under salt conditions. Taken together, it suggests that LOC_Os06g10650, encoding tyrosine phosphatase family protein, might be the causal candidate gene for qGR6.2.ConclusionsIn this study, we identified 13 QTLs from a landrace WJZ that confer seed germination traits under H2O and salt conditions. A major salt-tolerance-specific QTL qGR6.2 was fine mapped to a 65.9-kb region. Our results provide information on the genetic basis of improving rice seed germination under salt stress by marker-assisted selection (MAS).
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy