SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qin Jiajun) srt2:(2021)"

Sökning: WFRF:(Qin Jiajun) > (2021)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chu, Ming, et al. (författare)
  • Accurate capacitance-voltage characterization of organic thin films with current injection*
  • 2021
  • Ingår i: Chinese Physics B. - : IOP PUBLISHING LTD. - 1674-1056. ; 30:8
  • Tidskriftsartikel (refereegranskat)abstract
    • To deal with the invalidation of commonly employed series model and parallel model in capacitance-voltage (C-V) characterization of organic thin films when current injection is significant, a three-element equivalent circuit model is proposed. On this basis, the expression of real capacitance in consideration of current injection is theoretically derived by small-signal analysis method. The validity of the proposed equivalent circuit and theoretical expression are verified by a simulating circuit consisting of a capacitor, a diode, and a resistor. Moreover, the accurate C-V characteristic of an organic thin film device is obtained via theoretical correction of the experimental measuring result, and the real capacitance is 35.7% higher than the directly measured capacitance at 5-V bias in the parallel mode. This work strongly demonstrates the necessity to consider current injection in C-V measurement and provides a strategy for accurate C-V characterization experimentally.
  •  
2.
  • Qin, Jiajun, et al. (författare)
  • Aligning Transition Dipole Moment toward Light Amplification and Polarized Emission in Hybrid Perovskites
  • 2021
  • Ingår i: Advanced Optical Materials. - : Wiley-V C H Verlag GMBH. - 2162-7568 .- 2195-1071. ; 9:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Orientational manipulation of transition dipole moment (TDM) plays an important role in controlling the polarization of excited states in light emission as well as lasing actions. The present work discovers vertically aligned TDMs in hybrid perovskite films through angle-resolved photoluminescence (PL) measurements, which show enhanced emission through the film edge. With increasing excitation intensity, the edge emission induced by these vertically aligned TDMs becomes dominant and eventually leads to amplified spontaneous emission (ASE) through the edge view. Meanwhile, polarized emission of both PL and electroluminescence (EL) provides further evidence for vertically aligned TDMs. Surprisingly, the degree of polarization (DOP) through the film edge is increased when grain boundary defects are passivated through either stochiometric engineering or self-passivation by mobile ions under working conditions. With increasing DOP, ASE threshold of the perovskite film is reduced owing to enhanced collective behaviors of light-emitting states. This work presents a useful method to manipulate TDMs in organic-inorganic hybrid perovskites.
  •  
3.
  • Qin, Jiajun, et al. (författare)
  • Carrier Dynamics and Evaluation of Lasing Actions in Halide Perovskites
  • 2021
  • Ingår i: TRENDS IN CHEMISTRY. - : ELSEVIER. - 2589-5974. ; 3:1, s. 34-46
  • Forskningsöversikt (refereegranskat)abstract
    • Metal halide perovskites have shown rapid development in various fields such as photovoltaics, photodetectors, light-emitting diodes (LEDs), and optically pumped lasers owing to their superior optoelectronic properties. Here, we review the basic optoelectronic properties of halide perovskites from a photophysical perspective. We highlight that halide perovskites are promising in various optoelectronic devices functioning at a wide range of carrier densities. We discuss optically and electrically generated carrier density under two different excitation modes [continuous wave (CW) and pulsed] as well as the impact of carrier density on the optoelectronic behavior of perovskites. Moreover, we discuss lasing actions at high carrier densities and summarize key rules to evaluate the lasing actions. Last, we provide an outlook on perovskite-based electrically pumped lasers.
  •  
4.
  • Teng, Pengpeng, et al. (författare)
  • Degradation and self-repairing in perovskite light-emitting diodes
  • 2021
  • Ingår i: Matter. - : Elsevier. - 2590-2393 .- 2590-2385. ; 4:11, s. 3710-3724
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most critical challenges in perovskite light-emitting diodes (PeLEDs) lies in poor operational stability. Although field dependent ion migration is believed to play an important role in the operation of perovskite optoelectronic devices, a complete understanding of how it affects the stability of PeLEDs is still missing. Here, we report a unique self-repairing behavior that the electroluminescence of moderately degraded PeLEDs can almost completely restore to their initial performance after resting. We find that the accumulated halides within the hole transport layer undergo back diffusion toward the surface of the perovskite layer during resting, repairing the vacancies and thus resulting in electroluminescence recovery. These findings indicate that one of the dominant degradation pathways in PeLEDs is the generation of halide vacancies at perovskite/hole transport layer interface during operation. We thus further passivate this key interface, which results in a high external quantum efficiency of 22.8% and obviously improved operational stability.
  •  
5.
  • Wang, Heyong, et al. (författare)
  • Dynamic Redistribution of Mobile Ions in Perovskite Light-Emitting Diodes
  • 2021
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 31:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite quick development of perovskite light-emitting diodes (PeLEDs) during the past few years, the fundamental mechanisms on how ion migration affects device efficiency and stability remain unclear. Here, it is demonstrated that the dynamic redistribution of mobile ions in the emissive layer plays a key role in the performance of PeLEDs and can explain a range of abnormal behaviours commonly observed during the device measurement. The dynamic redistribution of mobile ions changes charge-carrier injection and leads to increased recombination current; at the same time, the ion redistribution also changes charge transport and results in decreased shunt resistance current. As a result, the PeLEDs show hysteresis in external quantum efficiencies (EQEs) and radiance, that is, higher EQEs and radiance during the reverse voltage scan than during the forward scan. In addition, the changes on charge injection and transport induced by the ion redistribution also well explain the rise of the EQE/radiance values under constant driving voltages. The argument is further rationalized by adding extra formamidinium iodide (FAI) into optimized PeLEDs based on FAPbI(3), resulting in more significant hysteresis and shorter operational stability of the PeLEDs.
  •  
6.
  • Yu, Hongling, et al. (författare)
  • Color-Stable Blue Light-Emitting Diodes Enabled by Effective Passivation of Mixed Halide Perovskites
  • 2021
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 12:26, s. 6041-6047
  • Tidskriftsartikel (refereegranskat)abstract
    • Bandgap tuning through mixing halide anions is one of the most attractive features for metal halide perovskites. However, mixed halide perovskites usually suffer from phase segregation under electrical biases. Herein, we obtain high-performance and color-stable blue perovskite LEDs (PeLEDs) based on mixed bromide/ chloride three-dimensional (3D) structures. We demonstrate that the color instability of CsPb(Br1-xClx)(3) PeLEDs results from surface defects at perovskite grain boundaries. By effective defect passivation, we achieve color-stable blue electroluminescence from CsPb(Br1-xClx)(3) PeLEDs, with maximum external quantum efficiencies of up to 4.5% and high luminance of up to 5351 cd m(-2) in the sky-blue region (489 nm). Our work provides new insights into the color instability issue of mixed halide perovskites and can spur new development of high-performance and color-stable blue PeLEDs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy