SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qin Jiajun) srt2:(2023)"

Sökning: WFRF:(Qin Jiajun) > (2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cai, Weidong, 1991- (författare)
  • Tunning Multicolor Light Emission in Lead-free Materials
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Perovskites are a class of compounds with the general formula ABX3 and becoming increasingly attractive recently. Because this kind of material possesses various advantages such as abundant raw materials, easy synthesis, excellent photoelectric properties, and short production process. As one of the applications for lead-based perovskites, the perovskite solar cells have quickly enhanced their PCE from 3.8% in 2009 to over 25% within a short period. However, the problems, such as instability of the ionic crystal nature and toxicity of lead, largely hinder the lead-based perovskites towards commercialization. Therefore, it is necessary to develop new lead-free materials as alternative to lead-based perovskites, where similar structures can be formed to inherit the excellent optoelectronic properties. Moreover, new properties can be achieved due to more abundant metal candidates in lead-free materials. Based on this, we develop different kinds of perovskite-structure-like lead-free materials such as organic inorganic hybrid materials, chiral materials and double perovskites. In addition to physical and chemical properties like photoluminescence, absorption, structure, etc., we further demonstrate their potential applications according to their unique properties such as multicolor light emission.We incorporate chiral MBA (methylbenzylamine) in inorganic metal system to obtain chiral lead-free organic inorganic hybrid materials, where significant crystallization difference is observed between rac and chiral halide compounds for the first time. Such difference is confirmed by spectrum and structural results. What’s more, we find that moisture can cause the structural transfer in chiral compounds, attributed to the asymmetric hydrogen bonding of chiral compounds. Our achievements open up new chance to improve our material property and provide new horizon for synthesis of chiral materials in the future.Then, we obtained blue emission center in Mn-based organic and inorganic compounds by choosing organic molecule MBA. The method has basic difference with the emissions in Mn based compounds. The coexisting two emission centers of our Mn based samples is verified by spectral results. Because two emission centers can induce different PL excitation responses, so that the excitation wavelengths are capable of manipulating the emission color. Specifically, we achieve CIE coordinates of (0.33, 0.35) with a white emission. The potential of our materials in anti-counterfeiting and multicolor lighting technology are further demonstrated. Our accomplishments explore a new approach for multicolor emission in Mn based materials.We finally obtained Sb3+/Cu+ co-doped Cs2NaInCl6 (CNIC) double perovskite by hydrothermal reaction which exhibits tunable dual emissions with PL quantum efficiency (PLQE) of 78%. Depending on different photoluminescence excitation (PLE) spectra between two emissions, multiple emission colors can be got by manipulating excitation wavelength. Interestingly, emission color gamut can be further tuned through manipulating the feeding ratio of CuI dopant, where warm color and cool color can be achieved separately. We further illustrated the application potential of our co-doped materials in the fileds of multicolor lighting devices and anti-counterfeiting. Our achievements open up a brand-new strategy for wider spectral luminescence of double perovskites and pace up the road for a series of new applications.
  •  
2.
  • Karlsson, Max, et al. (författare)
  • Role of chloride on the instability of blue emitting mixed-halide perovskites
  • 2023
  • Ingår i: FRONTIERS OF OPTOELECTRONICS. - : HIGHER EDUCATION PRESS. - 2095-2759. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Although perovskite light-emitting diodes (PeLEDs) have seen unprecedented development in device efficiency over the past decade, they suffer significantly from poor operational stability. This is especially true for blue PeLEDs, whose operational lifetime remains orders of magnitude behind their green and red counterparts. Here, we systematically investigate this efficiency-stability discrepancy in a series of green- to blue-emitting PeLEDs based on mixed Br/Cl-perovskites. We find that chloride incorporation, while having only a limited impact on efficiency, detrimentally affects device stability even in small amounts. Device lifetime drops exponentially with increasing Cl-content, accompanied by an increased rate of change in electrical properties during operation. We ascribe this phenomenon to an increased mobility of halogen ions in the mixed-halide lattice due to an increased chemically and structurally disordered landscape with reduced migration barriers. Our results indicate that the stability enhancement for PeLEDs might require different strategies from those used for improving efficiency.
  •  
3.
  • Pei, Y., et al. (författare)
  • A specialized partial discretized optimization algorithm for SLL suppression in FSS design
  • 2023
  • Ingår i: AIP Advances. - : AIP Publishing. - 2158-3226. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Side Lobe Level (SLL) suppression is a challenging but essential part of frequency selective surface (FSS) structural design. The SLL of the radiation pattern is a key parameter demonstrating the directional anti-interference ability and mainly depends on the geometry of the FSS. However, the correlation between SLL and FSS structural parameters is extremely complicated. A minor FSS structure change may result in a drastic diversion in the sidelobes direction or level, making the SLL the most difficult parameter to optimize. In this paper, an efficient optimization method specifically for SLL suppression is proposed. We discretized the edges of split square ring FSS structures by binary representation and generated new patterns based on the genetic algorithm. Optimization results showed that in the most optimal structure, the SLL was -23.41 dB, exhibiting a 5.17 dB reduction. Meanwhile, the center frequency variation was less than 2%. Moreover, the computation time cost was reduced by over 90% compared with that of the fully discretized pattern optimization method, showing that this novel method was truly effective in getting SLL suppressed FSS structures.
  •  
4.
  • Qin, Jiajun, et al. (författare)
  • From optical pumping to electrical pumping: the threshold overestimation in metal halide perovskites
  • 2023
  • Ingår i: Materials Horizons. - : ROYAL SOC CHEMISTRY. - 2051-6347 .- 2051-6355. ; 10:4, s. 1446-1453
  • Tidskriftsartikel (refereegranskat)abstract
    • The threshold carrier density, conventionally evaluated from optical pumping, is a key reference parameter towards electrically pumped lasers with the widely acknowledged assumption that optically excited charge carriers relax to the band edge through an ultrafast process. However, the characteristically slow carrier cooling in perovskites challenges this assumption. Here, we investigate the optical pumping of state-of-the-art bromide- and iodine-based perovskites. We find that the threshold decreases by one order of magnitude with decreasing excitation energy from 3.10 eV to 2.48 eV for methylammonium lead bromide perovskite (MAPbBr(3)), indicating that the low-energy photon excitation facilitates faster cooling and hence enables efficient carrier accumulation for population inversion. Our results are then interpreted due to the coupling of phonon scattering in connection with the band structure of perovskites. This effect is further verified in the two-photon pumping process, where the carriers relax to the band edge with a smaller difference in phonon momentum that speeds up the carrier cooling process. Furthermore, by extrapolating the optical pumping threshold to the band edge excitation as an analog of the electrical carrier injection to the perovskite, we obtain a critical threshold carrier density of similar to 1.9 x 10(17) cm(-3), which is one order of magnitude lower than that estimated from the conventional approach. Our work thus highlights the feasibility of metal halide perovskites for electrically pumped lasers.
  •  
5.
  • Wang, Heyong, 1989-, et al. (författare)
  • Impacts of the Lattice Strain on Perovskite Light-Emitting Diodes
  • 2023
  • Ingår i: Advanced Energy Materials. - : Wiley-V C H Verlag GMBH. - 1614-6832 .- 1614-6840. ; 13:33
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of perovskite light-emitting diodes (PeLEDs) with both high efficiency and excellent stability remains challenging. Herein, a strong correlation between the lattice strain in perovskite films and the stability of resulting PeLEDs is revealed. Based on high-efficiency PeLEDs, the device lifetime is optimized by rationally tailoring the lattice strain in perovskite films. A PeLED with a high peak external quantum efficiency of 18.2% and a long lifetime of 151 h (T-70, under a current density of 20 mA cm(-2)) is realized with a minimized lattice strain in the perovskite film. In addition, an increase in the lattice strain is found during the long-time device stability test, indicating that the degradation of the local perovskite lattice structure could be one of the degradation mechanisms for long-term stable PeLEDs.
  •  
6.
  • Zhang, Jia, et al. (författare)
  • Transport Layer Engineering Toward Lower Threshold for Perovskite Lasers
  • 2023
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 35:30
  • Tidskriftsartikel (refereegranskat)abstract
    • Charge-transport layers are essential for achieving electrically pumped perovskite lasers. However, their role in perovskite lasing is not fully understood. Here, the role of charge-transport layers on the lasing actions of perovskite films is explored by investigating the amplified spontaneous emission (ASE) thresholds. A largely reduced ASE threshold and enhanced ASE intensity is demonstrated by introducing an additional hole transport layer poly(triaryl amine) (PTAA). It is shown that the key role of the PTAA layer is to accelerate the hot-carrier cooling process by extracting holes in perovskites. With reduced hot holes, the Auger recombination loss is largely suppressed, resulting in decreased ASE threshold. This argument is further supported by the fact that the ASE threshold can be further reduced from 25.7 to 7.2 mu J cm(-2) upon switching the pumping wavelength from 400 to 500 nm to directly avoid excess hot-hole generation. This work exemplifies how to further reduce the ASE threshold with transport layer engineering through hot-hole manipulation. This is critical to maintaining the excellent gain properties of perovskites when integrating them into electrical devices, paving the way for electrically pumped perovskite lasers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy