SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qu Cheng Juan 1967 ) srt2:(2005-2009)"

Sökning: WFRF:(Qu Cheng Juan 1967 ) > (2005-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Julkunen, Petro, et al. (författare)
  • Stress-relaxation of human patellar articular cartilage in unconfined compression : prediction of mechanical response by tissue composition and structure.
  • 2008
  • Ingår i: Journal of Biomechanics. - : Elsevier. - 0021-9290 .- 1873-2380. ; 41:9, s. 1978-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanical properties of articular cartilage are controlled by tissue composition and structure. Cartilage function is sensitively altered during tissue degeneration, in osteoarthritis (OA). However, mechanical properties of the tissue cannot be determined non-invasively. In the present study, we evaluate the feasibility to predict, without mechanical testing, the stress-relaxation response of human articular cartilage under unconfined compression. This is carried out by combining microscopic and biochemical analyses with composition-based mathematical modeling. Cartilage samples from five cadaver patellae were mechanically tested under unconfined compression. Depth-dependent collagen content and fibril orientation, as well as proteoglycan and water content were derived by combining Fourier transform infrared imaging, biochemical analyses and polarized light microscopy. Finite element models were constructed for each sample in unconfined compression geometry. First, composition-based fibril-reinforced poroviscoelastic swelling models, including composition and structure obtained from microscopical and biochemical analyses were fitted to experimental stress-relaxation responses of three samples. Subsequently, optimized values of model constants, as well as compositional and structural parameters were implemented in the models of two additional samples to validate the optimization. Theoretical stress-relaxation curves agreed with the experimental tests (R=0.95-0.99). Using the optimized values of mechanical parameters, as well as composition and structure of additional samples, we were able to predict their mechanical behavior in unconfined compression, without mechanical testing (R=0.98). Our results suggest that specific information on tissue composition and structure might enable assessment of cartilage mechanics without mechanical testing.
  •  
2.
  • Qu, Cheng-Juan, 1967-, et al. (författare)
  • Effects of glucosamine sulfate on intracellular UDP-hexosamine and UDP-glucuronic acid levels in bovine primary chondrocytes.
  • 2007
  • Ingår i: Osteoarthritis and Cartilage. - : Saunders Elsevier. - 1063-4584 .- 1522-9653. ; 15:7, s. 773-779
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To analyze the effects of exogenously added glucose (Glc), glucosamine (GlcN) and glucosamine sulfate (GS) on the intracellular UDP-hexoses (UDP-Hex), UDP-N-acetylhexosamines (UDP-HexN) and UDP-glucuronic acid (UDP-GlcA) levels in bovine primary chondrocytes.METHODS: Chondrocytes were incubated with different concentrations of Glc, GlcN and GS either in high- or low-glucose DMEM for up to 120min to analyze the intracellular levels of UDP-Hex, UDP-GlcA and UDP-HexN by a reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry analysis. Glycosaminoglycan (GAG) synthesis rate and aggrecan mRNA expression levels were quantified using (35)S-sulfate incorporation assay and quantitative real-time RT-PCR, respectively. The cells were cultivated for 2 days or 8 days before UDP-sugar analysis.RESULTS: Levels of UDP-HexN and UDP-GlcA were unchanged at 10microM concentration of GS in low-glucose DMEM, while addition of 1mM GlcN or GS in low-glucose DMEM for 10min increased UDP-HexN level. The highest intracellular level of UDP-HexN was reached at 30min after addition of 1mM GS to the cells. The intracellular contents of UDP-HexN and UDP-GlcA related to UDP-Hex were higher after prolonged cultivation of chondrocytes for 8 days compared with 2-day-old cultures. Aggrecan mRNA expression and GAG synthesis remained at control level after the cells were treated with 10, 100microM or 1mM of GS for 24h.CONCLUSION: Physiologically relevant level of GS could not increase the intracellular UDP-HexN and UDP-GlcA levels in bovine primary chondrocyte, while longer-time culture itself appeared to increase the intracellular UDP-HexN and UDP-GlcA levels.
  •  
3.
  • Qu, Cheng-Juan, 1967-, et al. (författare)
  • Glucosamine sulphate does not increase extracellular matrix production at low oxygen tension.
  • 2009
  • Ingår i: Cell and Tissue Research. - : Springer. - 0302-766X .- 1432-0878. ; 337:1, s. 103-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Low oxygen tension may change the dependence of chondrocytes on exogenous carbohydrate sources. In this study, we have investigated whether glucosamine sulphate (GS) stimulates proteoglycan synthesis, the mRNA expression of aggrecan and of type II collagen, and UDP-sugar levels in bovine primary chondrocytes under a low oxygen (O(2)) atmosphere. Chondrocytes from bovine femoral condyles were cultivated with or without GS or sulphate at various concentrations in low- (5.5 mM) or high-glucose (25 mM) DMEM under either a 5% or 20% O(2) atmosphere for 2 or 8 days after isolation. The mRNA expression of aggrecan and type II collagen and the synthesis of glycosaminoglycan (GAG) were determined by quantitative real-time reverse transcription with polymerase chain reaction and a [(35)S]-sulphate incorporation assay, respectively. Aggrecan promoter activity was analysed by a dual-luciferase reporter gene assay. Intracellular UDP-N-acetylhexosamines (UDP-HexN), UDP-glucuronic acid and UDP-hexoses were analysed by reversed-phase high-performance liquid chromatography electrospray ionization mass spectrometry. A low (5%) O(2) atmosphere significantly increased GAG synthesis, mRNA expression of aggrecan and of type II collagen and aggrecan promoter activity in bovine primary chondrocytes. A high (1 mM) concentration of GS was required to increase the level of UDP-HexN. However, GS did not increase GAG synthesis, aggrecan promoter activity or mRNA expression of aggrecan and of type II collagen. Interestingly, a 5% O(2) atmosphere increased the level of UDP-HexN in 8-day cultures without GS treatment. Thus, exogenous GS does not change chondrocyte metabolism, whereas a 5% O(2) atmosphere stimulates extracellular matrix production in bovine primary chondrocytes. The balance of UDP-sugars is changed under a 5% O(2) atmosphere for longer culture periods.
  •  
4.
  • Qu, Cheng-Juan, 1967-, et al. (författare)
  • Human articular cartilage proteoglycans are not undersulfated in osteoarthritis.
  • 2007
  • Ingår i: Connective Tissue Research. - : Informa Healthcare. - 0300-8207 .- 1607-8438. ; 48:1, s. 27-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Chondroitin sulfate is the major constituent of cartilage. Inadequate sulfate availability results in the production of undersulfated proteoglycans. In osteoarthritis, there is a net loss of articular cartilage proteoglycans. Theoretically, it is possible that during the progress of disease undersulfated glycosaminoglycans are synthesized producing proteoglycans with poorer biological properties. In this study, we tested whether in early human osteoarthritic articular cartilage (Mankin's score of 2 and 3) or more advanced disease (Mankin's score over 3), there are proteoglycans that contain a higher relative amount of nonsulfated chondroitin disaccharide isomer in their chondroitin sulfate chains by analyzing the molar ratios of chondroitin sulfate disaccharide isoforms with fluorophore-assisted carbohydrate electrophoresis. Our results indicated that the nonsulfated disaccharide of chondroitin sulfate formed in average only 1-2% of the total chondroitin sulfate. More important, the molar ratio of nonsulfated disaccharide did not appear to be increased in the osteoarthritic articular cartilage. We conclude that undersulfation of articular cartilage proteoglycans is not present in the human osteoarthritic joint.
  •  
5.
  • Qu, Cheng-Juan, 1967-, et al. (författare)
  • The lack of effect of glucosamine sulphate on aggrecan mRNA expression and (35)S-sulphate incorporation in bovine primary chondrocytes.
  • 2006
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier. - 0006-3002 .- 1878-2434. ; 1762:4, s. 453-459
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucosamine and glucosamine sulphate have been promoted as a disease-modifying agent to improve the clinical symptoms of osteoarthritis. The precise mechanism of the action of the suggested positive effect of glucosamine or glucosamine sulphate on cartilage proteoglycans is not known, since the level of glucosamine in plasma remains very low after oral administration of glucosamine sulphate. We examined whether exogenous hexosamines or their sulphated forms would increase steady-state levels of aggrecan and hyaluronan synthase (HAS) or glycosaminoglycan synthesis using Northern blot and (35)S-sulphate incorporation analyses. Total RNA was extracted from bovine primary chondrocytes which were cultured either in 1 mM concentration of glucosamine, galactosamine, mannosamine, glucosamine 3-sulphate, glucosamine 6-sulphate or galactosamine 6-sulphate for 0, 4, 8 and 24 h, or in three different concentrations (control, 100 microM and 1 mM) of glucosamine sulphate salt or glucose for 24 or 72 h. Northern blot assay showed that neither hexosamines nor glucosamine sulphate salt stimulated aggrecan and HAS-2 mRNA expression. Glycosaminoglycan synthesis remained at a control level in the treated cultures, with the exception of mannosamine which inhibited (35)S-sulphate incorporation in low-glucose DMEM treatment. In our culture conditions, hexosamines or their sulphated forms did not increase aggrecan expression or (35)S-sulphate incorporation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy