SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rafols Francesc Perez) srt2:(2021)"

Sökning: WFRF:(Rafols Francesc Perez) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kalliorinne, Kalle, et al. (författare)
  • Artificial Neural Network Architecture for Prediction of Contact Mechanical Response
  • 2021
  • Ingår i: Frontiers in Mechanical Engineering. - : Frontiers Media S.A.. - 2297-3079. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicting the contact mechanical response for various types of surfaces is and has long been a subject, where many researchers have made valuable contributions. This is because the surface topography has a tremendous impact on the tribological performance of many applications. The contact mechanics problem can be solved in many ways, with less accurate but fast asperity-based models on one end to highly accurate but not as fast rigorous numerical methods on the other. A mathematical model as fast as an asperity-based, yet as accurate as a rigorous numerical method is, of course, preferred. Artificial neural network (ANN)-based models are fast and can be trained to interpret how in- and output of processes are correlated. Herein, 1,536 surface topographies are generated with different properties, corresponding to three height probability density and two power spectrum functions, for which, the areal roughness parameters are calculated. A numerical contact mechanics approach was employed to obtain the response for each of the 1,536 surface topographies, and this was done using four different values of the hardness per surface and for a range of loads. From the results, 14 in situ areal roughness parameters and six contact mechanical parameters were calculated. The load, the hardness, and the areal roughness parameters for the original surfaces were assembled as input to a training set, and the in situ areal roughness parameters and the contact mechanical parameters were used as output. A suitable architecture for the ANN was developed and the training set was used to optimize its parameters. The prediction accuracy of the ANN was validated on a test set containing specimens not seen during training. The result is a quickly executing ANN, that given a surface topography represented by areal roughness parameters, can predict the contact mechanical response with reasonable accuracy. The most important contact mechanical parameters, that is, the real area of contact, the average interfacial separation, and the contact stiffness can in fact be predicted with high accuracy. As the model is only trained on six different combinations of height probability density and power spectrum functions, one can say that an output should only be trusted if the input surface can be represented with one of these.
  •  
2.
  • Pérez-Ràfols, Francesc, 1990-, et al. (författare)
  • On the stiffness of surfaces with non-Gaussian height distribution
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, the stiffness, i.e., the derivative of the load-separation curve, is studied for self-affine fractal surfaces with non-Gaussian height distribution. In particular, the heights of the surfaces are assumed to follow a Weibull distribution. We find that a linear relation between stiffness and load, well established for Gaussian surfaces, is not obtained in this case. Instead, a power law, which can be motivated by dimensionality analysis, is a better descriptor. Also unlike Gaussian surfaces, we find that the stiffness curve is no longer independent of the Hurst exponent in this case. We carefully asses the possible convergence errors to ensure that our conclusions are not affected by them.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Almqvist, Andreas (2)
Pérez-Ràfols, France ... (2)
Liwicki, Marcus (1)
Larsson, Roland (1)
Kalliorinne, Kalle (1)
Lärosäte
Luleå tekniska universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Teknik (2)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy