SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Raguso Robert A.) srt2:(2015-2019)"

Sökning: WFRF:(Raguso Robert A.) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Junker, Robert R., et al. (författare)
  • Covariation and phenotypic integration in chemical communication displays : Biosynthetic constraints and eco-evolutionary implications
  • 2018
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 220:3, s. 739-749
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical communication is ubiquitous. The identification of conserved structural elements in visual and acoustic communication is well established, but comparable information on chemical communication displays (CCDs) is lacking. We assessed the phenotypic integration of CCDs in a meta-analysis to characterize patterns of covariation in CCDs and identified functional or biosynthetically constrained modules. Poorly integrated plant CCDs (i.e. low covariation between scent compounds) support the notion that plants often utilize one or few key compounds to repel antagonists or to attract pollinators and enemies of herbivores. Animal CCDs (mostly insect pheromones) were usually more integrated than those of plants (i.e. stronger covariation), suggesting that animals communicate via fixed proportions among compounds. Both plant and animal CCDs were composed of modules, which are groups of strongly covarying compounds. Biosynthetic similarity of compounds revealed biosynthetic constraints in the covariation patterns of plant CCDs. We provide a novel perspective on chemical communication and a basis for future investigations on structural properties of CCDs. This will facilitate identifying modules and biosynthetic constraints that may affect the outcome of selection and thus provide a predictive framework for evolutionary trajectories of CCDs in plants and animals.
  •  
2.
  • Tröger, Armin, et al. (författare)
  • The Pattern of Straight Chain Hydrocarbons Released by Yucca Flowers (Asparagaceae)
  • 2019
  • Ingår i: Journal of Chemical Ecology. - : Springer Science and Business Media LLC. - 0098-0331 .- 1573-1561. ; 45:1, s. 46-49
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydrocarbon pattern in the floral scent of Yucca species was found to comprise a group of unbranched, mid-chain alkanes, alkenes, and an alkadiene. In Y. reverchonii, highly dominant (Z)-8-heptadecene is accompanied by (6Z,9Z)-6,9-heptadecadiene and heptadecane as minor components and by traces of other saturated and unsaturated hydrocarbons with similar chain length. Some of these volatiles proved to be perceived by the antennae of Tegeticula cassandra (pollinating seed-eater of Yucca) and Prodoxus decipiens (herbivore on Yucca). The possible biosynthesis of the compounds is discussed.
  •  
3.
  • Burdon, Rosalie C. F., et al. (författare)
  • Spatiotemporal floral scent variation of Penstemon digitalis
  • 2015
  • Ingår i: Journal of Chemical Ecology. - : Springer Science and Business Media LLC. - 0098-0331 .- 1573-1561. ; 41:7, s. 641-650
  • Tidskriftsartikel (refereegranskat)abstract
    • Variability in floral volatile emissions can occur temporally through floral development, during diel cycles, as well as spatially within a flower. These spatiotemporal patterns are hypothesized to provide additional information to floral visitors, but they are rarely measured, and their attendant hypotheses are even more rarely tested. In Penstemon digitalis, a plant whose floral scent has been shown to be under strong phenotypic selection for seed fitness, we investigated spatiotemporal variation in floral scent by using dynamic headspace collection, respectively solid-phase microextraction, and analyzed the volatile samples by combined gas chromatography-mass spectrometry. Total volatile emission was greatest during flowering and peak pollinator activity hours, suggesting its importance in mediating ecological interactions. We also detected tissue and reward-specific compounds, consistent with the hypothesis that complexity in floral scent composition reflects several ecological functions. In particular, we found tissue-specific scents for the stigma, stamens, and staminode (a modified sterile stamen common to all Penstemons). Our findings emphasize the dynamic nature of floral scents and highlight a need for greater understanding of ecological and physiological mechanisms driving spatiotemporal patterns in scent production.
  •  
4.
  • Friberg, Magne, et al. (författare)
  • Extreme diversification of floral volatiles within and among species of Lithophragma (Saxifragaceae)
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 116:10, s. 4406-4415
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge in evolutionary biology is to understand how complex traits of multiple functions have diversified and codiversified across interacting lineages and geographic ranges. We evaluate intra- and interspecific variation in floral scent, which is a complex trait of documented importance for mutualistic and antagonistic interactions between plants, pollinators, and herbivores. We performed a large-scale, phylogenetically structured study of an entire plant genus (Lithophragma, Saxifragaceae), of which several species are coevolving with specialized pollinating floral parasites of the moth genus Greya (Prodoxidae). We sampled 94 Lithophragma populations distributed across all 12 recognized Lithophragma species and subspecies, and four populations of related saxifragaceous species. Our results reveal an unusually high diversity of floral volatiles among populations, species, and clades within the genus. Moreover, we found unexpectedly major changes at each of these levels in the biosynthetic pathways used by local populations in their floral scents. Finally, we detected significant, but variable, genus- and species-level patterns of ecological convergence in the floral scent signal, including an impact of the presence and absence of two pollinating Greya moth species. We propose that one potential key to understanding floral scent variation in this hypervariable genus is its geographically diverse interactions with the obligate specialized Greya moths and, in some species and sites, more generalized copollinators.
  •  
5.
  • Kuenzinger, William, et al. (författare)
  • Innate colour preferences of a hawkmoth depend on visual context
  • 2019
  • Ingår i: Biology letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Solitary insects that feed on floral nectar must use innate knowledge to find their first flower. While innate preferences for flower colours are often described as fixed, species-specific traits, the nature and persistence of these preferences have been debated, particularly in relation to ontogenetic processes such as learning. Here we present evidence for a strong context-dependence of innate colour preferences in the crepuscular hawkmoth Manduca sexta. Contrary to expectations, our results show that innate colour biases shift with changes in the visual environment, namely illuminance and background. This finding reveals that innate responses might emerge from a contextual integration of sensory inputs involved in object class recognition rather than from the deterministic matching of such inputs with a fixed internal representation.
  •  
6.
  • Svensson, Glenn P., et al. (författare)
  • Floral scent of joshua trees (Yucca brevifolia sensu lato) : Divergence in scent profiles between species but breakdown of signal integrity in a narrow hybrid zone
  • 2016
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 103:10, s. 1793-1802
  • Tidskriftsartikel (refereegranskat)abstract
    • PREMISE OF THE STUDY: The role of floral scent in facilitating reproductive isolation between closely related plants remains poorly understood. Yucca brevifolia and Yucca jaegeriana are pollinated by different moth species in allopatry, but in a narrow contact zone, pollinator–host specificity breaks down, resulting in hybridization between species. We explored the chemical basis for reproductive isolation and hybridization in these Joshua trees by characterizing the floral scent of each species in allopatry, analyzing scent profiles from trees in the contact zone, and matching these data with genotypic and phenotypic data. METHODS: We analyzed floral volatiles using gas chromatography–mass spectrometry, tested for species divergence of scent profiles and classified trees in the contact zone as hybrid or either parental species. We used floral and vegetative morphological data and genotypic data to classify trees and analyzed whether certain trait combinations were more correlated than others with respect to assignment of trees and whether frequencies of classified tree types differed depending on which data set was used. KEY RESULTS: The Joshua tree floral scent included oxygenated 8-carbon compounds not reported for other yuccas. The two species differed (P < 0.001) in scent profiles. In the contact zone, many hybrids were found, and phenotypic traits were generally weakly correlated, which may be explained by extensive gene flow between species or by exposure to different selection pressures. CONCLUSIONS: Although the two Joshua tree species produce distinct floral scent profiles, it is insufficient to prevent attraction of associated pollinators to both hosts. Instead, floral morphology may be the key trait mediating gene flow between species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy