SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rahman Moksadur) srt2:(2019)"

Sökning: WFRF:(Rahman Moksadur) > (2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rahman, Moksadur, 1989-, et al. (författare)
  • An Approach for Feedforward Model Predictive Control of Continuous Pulp Digesters
  • 2019
  • Ingår i: Processes. - : MDPI AG. - 2227-9717. ; 7:9, s. 602-622
  • Tidskriftsartikel (refereegranskat)abstract
    • Kappa number variability at the continuous digester outlet is a major concern for pulp and paper mills. It is evident that the aforementioned variability is strongly linked to the feedstock wood properties, particularly lignin content. Online measurement of lignin content utilizing near-infrared spectroscopy at the inlet of the digester is paving the way for tighter control of the blow-line Kappa number. In this paper, an innovative approach of feedforwarding the lignin content to a model predictive controller was investigated with the help of modeling and simulation studies. For this purpose, a physics-based modeling library for continuous pulp digesters was developed and validated. Finally, model predictive control approaches with and without feedforwarding the lignin measurement were evaluated against current industrial control and proportional-integral-derivative (PID) schemes. 
  •  
2.
  • Rahman, Moksadur, 1989- (författare)
  • Towards a learning system for process and energy industry : Enabling optimal control, diagnostics and decision support
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Driven by intense competition, increasing operational cost and strict environmental regulations, the modern process and energy industry needs to find the best possible way to adapt to maintain profitability. Optimization of control and operation of the industrial systems is essential to satisfy the contradicting objectives of improving product quality and process efficiency while reducing production cost and plant downtime. Use of optimization not only improves the control and monitoring of assets but also offers better coordination among different assets. Thus, it can lead to considerable savings in energy and resource consumption, and consequently offer a reduction in operational costs, by offering better control, diagnostics and decision support. This is one of the main driving forces behind developing new methods, tools and frameworks that can be integrated with the existing industrial automation platforms to benefit from optimal control and operation. The main focus of this dissertation is the use of different process models, soft sensors and optimization techniques to improve the control, diagnostics and decision support for the process and energy industry. A generic architecture for an optimal control, diagnostics and decision support system, referred to here as a learning system, is proposed. The research is centred around an investigation of different components of the proposed learning system. Two very different case studies within the energy-intensive pulp and paper industry and the promising micro-combined heat and power (CHP) industry are selected to demonstrate the learning system. One of the main challenges in this research arises from the marked differences between the case studies in terms of size, functions, quantity and structure of the existing automation systems. Typically, only a few pulp digesters are found in a Kraft pulping mill, but there may be hundreds of units in a micro-CHP fleet. The main argument behind the selection of these two case studies is that if the proposed learning system architecture can be adapted for these significantly different cases, it can be adapted for many other energy and process industrial cases. Within the scope of this thesis, mathematical modelling, model adaptation, model predictive control and diagnostics methods are studied for continuous pulp digesters, whereas mathematical modelling, model adaptation and diagnostics techniques are explored for the micro-CHP fleet.
  •  
3.
  • Zaccaria, Valentina, 1989-, et al. (författare)
  • A review of information fusion methodsfor gas turbine diagnostics
  • 2019
  • Ingår i: Sustainability. - : MDPI AG. - 2071-1050. ; 11:22
  • Forskningsöversikt (refereegranskat)abstract
    • The correct and early detection of incipient faults or severe degradation phenomena in gas turbine systems is essential for safe and cost-effective operations. A multitude of monitoring and diagnostic systems were developed and tested in the last few decades. The current computational capability of modern digital systems was exploited for both accurate physics-based methods and artificial intelligence or machine learning methods. However, progress is rather limited and none of the methods explored so far seem to be superior to others. One solution to enhance diagnostic systems exploiting the advantages of various techniques is to fuse the information coming from different tools, for example, through statistical methods. Information fusion techniques such as Bayesian networks, fuzzy logic, or probabilistic neural networks can be used to implement a decision support system. This paper presents a comprehensive review of information and decision fusion methods applied to gas turbine diagnostics and the use of probabilistic reasoning to enhance diagnostic accuracy. The different solutions presented in the literature are compared, and major challenges for practical implementation on an industrial gas turbine are discussed. Detecting and isolating faults in a system is a complex problem with many uncertainties, including the integrity of available information. The capability of different information fusion techniques to deal with uncertainty are also compared and discussed. Based on the lessons learned, new perspectives for diagnostics and a decision support system are proposed. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy