SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ransom M.) srt2:(2020-2023)"

Sökning: WFRF:(Ransom M.) > (2020-2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ajello, M., et al. (författare)
  • A gamma-ray pulsar timing array constrains the nanohertz gravitational wave background
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 376:6592, s. 521-523
  • Tidskriftsartikel (refereegranskat)abstract
    • After large galaxies merge, their central supermassive black holes are expected to form binary systems. Their orbital motion should generate a gravitational wave background (GWB) at nanohertz frequencies. Searches for this background use pulsar timing arrays, which perform long-term monitoring of millisecond pulsars at radio wavelengths. We used 12.5 years of Fermi Large Area Telescope data to form a gamma-ray pulsar timing array. Results from 35 bright gamma-ray pulsars place a 95% credible limit on the GWB characteristic strain of 1.0 x 10(-14) at a frequency of 1 year(-1). The sensitivity is expected to scale with t(obs), the observing time span, as t(obs)(-13/6). This direct measurement provides an independent probe of the GWB while offering a check on radio noise models.
  •  
2.
  • Amiri, M., et al. (författare)
  • Periodic activity from a fast radio burst source
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 582:7812, s. 351-355
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from sources at extragalactic distances1, the origin of which is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events2–4. Despite searches for periodicity in repeat burst arrival times on timescales from milliseconds to many days2,5–7, these bursts have hitherto been observed to appear sporadically and—although clustered8—without a regular pattern. Here we report observations of a 16.35 ± 0.15 day periodicity (or possibly a higher-frequency alias of that periodicity) from the repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project4,9. In 38 bursts recorded from 16 September 2018 to 4 February 2020 utc, we find that all bursts arrive in a five-day phase window, and 50 per cent of the bursts arrive in a 0.6-day phase window. Our results suggest a mechanism for periodic modulation either of the burst emission itself or through external amplification or absorption, and disfavour models invoking purely sporadic processes.
  •  
3.
  • Kirsten, Franz, 1983, et al. (författare)
  • A repeating fast radio burst source in a globular cluster
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 602:7898, s. 585-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are flashes of unknown physical origin1. The majority of FRBs have been seen only once, although some are known to generate multiple flashes2,3. Many models invoke magnetically powered neutron stars (magnetars) as the source of the emission4,5. Recently, the discovery6 of another repeater (FRB 20200120E) was announced, in the direction of the nearby galaxy M81, with four potential counterparts at other wavelengths6. Here we report observations that localized the FRB to a globular cluster associated with M81, where it is 2 parsecs away from the optical centre of the cluster. Globular clusters host old stellar populations, challenging FRB models that invoke young magnetars formed in a core-collapse supernova. We propose instead that FRB 20200120E originates from a highly magnetized neutron star formed either through the accretion-induced collapse of a white dwarf, or the merger of compact stars in a binary system7. Compact binaries are efficiently formed inside globular clusters, so a model invoking them could also be responsible for the observed bursts.
  •  
4.
  • Torne, Pablo, et al. (författare)
  • A Search for Pulsars around Sgr A* in the First Event Horizon Telescope Data Set
  • 2023
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 959:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2017 the Event Horizon Telescope (EHT) observed the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), at a frequency of 228.1 GHz (lambda = 1.3 mm). The fundamental physics tests that even a single pulsar orbiting Sgr A* would enable motivate searching for pulsars in EHT data sets. The high observing frequency means that pulsars-which typically exhibit steep emission spectra-are expected to be very faint. However, it also negates pulse scattering, an effect that could hinder pulsar detections in the Galactic center. Additionally, magnetars or a secondary inverse Compton emission could be stronger at millimeter wavelengths than at lower frequencies. We present a search for pulsars close to Sgr A* using the data from the three most sensitive stations in the EHT 2017 campaign: the Atacama Large Millimeter/submillimeter Array, the Large Millimeter Telescope, and the IRAM 30 m Telescope. We apply three detection methods based on Fourier-domain analysis, the fast folding algorithm, and single-pulse searches targeting both pulsars and burst-like transient emission. We use the simultaneity of the observations to confirm potential candidates. No new pulsars or significant bursts were found. Being the first pulsar search ever carried out at such high radio frequencies, we detail our analysis methods and give a detailed estimation of the sensitivity of the search. We conclude that the EHT 2017 observations are only sensitive to a small fraction (less than or similar to 2.2%) of the pulsars that may exist close to Sgr A*, motivating further searches for fainter pulsars in the region.
  •  
5.
  • Jalloh, Mohamed F., et al. (författare)
  • Evidence of behaviour change during an Ebola virus disease outbreak, Sierra Leone
  • 2020
  • Ingår i: Bulletin of the World Health Organization. - : World Health Organization. - 0042-9686 .- 1564-0604. ; 98:5, s. 330-340
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To evaluate changes in Ebola-related knowledge, attitudes and prevention practices during the Sierra Leone outbreak between 2014 and 2015.Methods Four cluster surveys were conducted: two before the outbreak peak (3499 participants) and two after (7104 participants). We assessed the effect of temporal and geographical factors on 16 knowledge, attitude and practice outcomes.Findings Fourteen of 16 knowledge, attitude and prevention practice outcomes improved across all regions from before to after the outbreak peak. The proportion of respondents willing to: (i) welcome Ebola survivors back into the community increased from 60.0% to 89.4% (adjusted odds ratio, aOR: 6.0; 95% confidence interval, CI: 3.9–9.1); and (ii) wait for a burial team following a relative’s death increased from 86.0% to 95.9% (aOR: 4.4; 95% CI: 3.2–6.0). The proportion avoiding unsafe traditional burials increased from 27.3% to 48.2% (aOR: 3.1; 95% CI: 2.4–4.2) and the proportion believing spiritual healers can treat Ebola decreased from 15.9% to 5.0% (aOR: 0.2; 95% CI: 0.1–0.3). The likelihood respondents would wait for burial teams increased more in high-transmission (aOR: 6.2; 95% CI: 4.2–9.1) than low-transmission (aOR: 2.3; 95% CI: 1.4–3.8) regions. Self-reported avoidance of physical contact with corpses increased in high but not low-transmission regions, aOR: 1.9 (95% CI: 1.4–2.5) and aOR: 0.8 (95% CI: 0.6–1.2), respectively.Conclusion Ebola knowledge, attitudes and prevention practices improved during the Sierra Leone outbreak, especially in high-transmission regions. Behaviourally-targeted community engagement should be prioritized early during outbreaks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy