SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Raut M) srt2:(2022)"

Search: WFRF:(Raut M) > (2022)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Anchordoqui, Luis A., et al. (author)
  • The Forward Physics Facility : Sites, experiments, and physics potential
  • 2022
  • In: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 968, s. 1-50
  • Journal article (peer-reviewed)abstract
    • The Forward Physics Facility (FPF) is a proposal to create a cavern with the space and infrastructure to support a suite of far-forward experiments at the Large Hadron Collider during the High Luminosity era. Located along the beam collision axis and shielded from the interaction point by at least 100 m of concrete and rock, the FPF will house experiments that will detect particles outside the acceptance of the existing large LHC experiments and will observe rare and exotic processes in an extremely low-background environment. In this work, we summarize the current status of plans for the FPF, including recent progress in civil engineering in identifying promising sites for the FPF and the experiments currently envisioned to realize the FPF's physics potential. We then review the many Standard Model and new physics topics that will be advanced by the FPF, including searches for long-lived particles, probes of dark matter and dark sectors, high-statistics studies of TeV neutrinos of all three flavors, aspects of perturbative and non-perturbative QCD, and high-energy astroparticle physics.
  •  
2.
  • Becker, Tracy M., et al. (author)
  • Mid-ultraviolet Hubble Observations of Europa and the Global Surface Distribution of SO2
  • 2022
  • In: The Planetary Science Journal. - : IOP Publishing Ltd. - 2632-3338. ; 3:6
  • Journal article (peer-reviewed)abstract
    • We present spatially resolved reflectance spectra of Europa's surface in the wavelength range of 210-315 nm obtained by the Hubble Space Telescope Imaging Spectrograph in 2018 and 2019. These data provide the first high-quality, near-global spectral observations of Europa from 210 to 240 nm. They show that the reflectance of Europa's leading, trailing, anti-Jovian, and sub-Jovian hemispheres is similar to 5% near 210 nm, with varying spectral slopes across the mid-UV. This low albedo, even on the more "pristine" leading hemisphere, indicates a lack of the signature far-UV spectral edge characteristic of water ice. We detected and mapped a strong absorption feature at 280 nm that is consistent with an S-O bond that has previously been attributed to SO2 on the surface, hypothesized to be formed through radiolytic processing of Iogenic sulfur ions that have been preferentially emplaced on Europa's trailing hemisphere by Jupiter's magnetic field. Our models show that small inclusions of SO2 (0.1%) within the water ice are sufficient to produce the 280 nm feature without producing a feature at 4.07 mu m, which has not been observed in ground-based spectral observations of Europa. This data set is the first to produce a spatially resolved, near-global map of the assumed SO2 feature, which is primarily concentrated near the apex of the trailing hemisphere and correlated with large-scale darker regions in both the visible and the ultraviolet. This distribution is consistent with "cold" exogenic sulfur ion bombardment on Europa.
  •  
3.
  • von Salzen, Knut, et al. (author)
  • Clean air policies are key for successfully mitigating Arctic warming
  • 2022
  • In: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 3:1
  • Journal article (peer-reviewed)abstract
    • A tighter integration of modeling frameworks for climate and air quality is urgently needed to assess the impacts of clean air policies on future Arctic and global climate. We combined a new model emulator and comprehensive emissions scenarios for air pollutants and greenhouse gases to assess climate and human health co-benefits of emissions reductions. Fossil fuel use is projected to rapidly decline in an increasingly sustainable world, resulting in far-reaching air quality benefits. Despite human health benefits, reductions in sulfur emissions in a more sustainable world could enhance Arctic warming by 0.8 °C in 2050 relative to the 1995–2014, thereby offsetting climate benefits of greenhouse gas reductions. Targeted and technically feasible emissions reduction opportunities exist for achieving simultaneous climate and human health co-benefits. It would be particularly beneficial to unlock a newly identified mitigation potential for carbon particulate matter, yielding Arctic climate benefits equivalent to those from carbon dioxide reductions by 2050.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view