SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Raut M) srt2:(2024)"

Search: WFRF:(Raut M) > (2024)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Flood, Victoria A., et al. (author)
  • Evaluating modelled tropospheric columns of CH4, CO, and O3 in the Arctic using ground-based Fourier transform infrared (FTIR) measurements
  • 2024
  • In: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24:2, s. 1079-1118
  • Journal article (peer-reviewed)abstract
    • This study evaluates tropospheric columns of methane, carbon monoxide, and ozone in the Arctic simulated by 11 models. The Arctic is warming at nearly 4 times the global average rate, and with changing emissions in and near the region, it is important to understand Arctic atmospheric composition and how it is changing. Both measurements and modelling of air pollution in the Arctic are difficult, making model validation with local measurements valuable. Evaluations are performed using data from five high-latitude ground-based Fourier transform infrared (FTIR) spectrometers in the Network for the Detection of Atmospheric Composition Change (NDACC). The models were selected as part of the 2021 Arctic Monitoring and Assessment Programme (AMAP) report on short-lived climate forcers. This work augments the model-measurement comparisons presented in that report by including a new data source: column-integrated FTIR measurements, whose spatial and temporal footprint is more representative of the free troposphere than in situ and satellite measurements. Mixing ratios of trace gases are modelled at 3-hourly intervals by CESM, CMAM, DEHM, EMEP MSC-W, GEM-MACH, GEOS-Chem, MATCH, MATCH-SALSA, MRI-ESM2, UKESM1, and WRF-Chem for the years 2008, 2009, 2014, and 2015. The comparisons focus on the troposphere (0-7km partial columns) at Eureka, Canada; Thule, Greenland; Ny Ålesund, Norway; Kiruna, Sweden; and Harestua, Norway. Overall, the models are biased low in the tropospheric column, on average by -9.7% for CH4, -21% for CO, and -18% for O3. Results for CH4 are relatively consistent across the 4 years, whereas CO has a maximum negative bias in the spring and minimum in the summer and O3 has a maximum difference centered around the summer. The average differences for the models are within the FTIR uncertainties for approximately 15% of the model-location comparisons.
  •  
3.
  • Lapere, Remy, et al. (author)
  • Polar Aerosol Atmospheric Rivers : Detection, Characteristics, and Potential Applications
  • 2024
  • In: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 129:2
  • Journal article (peer-reviewed)abstract
    • Aerosols play a key role in polar climate, and are affected by long-range transport from the mid-latitudes, both in the Arctic and Antarctic. This work investigates poleward extreme transport events of aerosols, referred to as polar aerosol atmospheric rivers (p-AAR), leveraging the concept of atmospheric rivers (AR) which signal extreme transport of moisture. Using reanalysis data, we build a detection catalog of p-AARs for black carbon, dust, sea salt and organic carbon aerosols, for the period 1980-2022. First, we describe the detection algorithm, discuss its sensitivity, and evaluate its validity. Then, we present several extreme transport case studies, in the Arctic and in the Antarctic, illustrating the complementarity between ARs and p-AARs. Despite similarities in transport pathways during co-occurring AR/p-AAR events, vertical profiles differ depending on the species, and large-scale transport patterns show that moisture and aerosols do not necessarily originate from the same areas. The complementarity between AR and p-AAR is also evidenced by their long-term characteristics in terms of spatial distribution, seasonality and trends. p-AAR detection, as a complement to AR, can have several important applications for better understanding polar climate and its connections to the mid-latitudes. The extreme transport of aerosol-containing air masses, from the mid-latitudes to the polar regions, can be characterized and quantified by leveraging polar Aerosol Atmospheric Rivers (p-AARs). This is similar to the Atmospheric Rivers (ARs) which carry large amounts of water to the poles and affect the overall stability of polar ecosystems. In this work, we establish a detection algorithm for p-AARs and evaluate it for different well-known aerosol intrusions or AR events. The areas most affected by p-AARs are described, their trends are investigated and we discuss the potential applications of p-AAR detection for a better understanding of polar climate. A catalog of polar aerosol atmospheric rivers (p-AAR) is provided for 1980-2022 by adapting an atmospheric river (AR) detection schemeImportant p-AAR events, representing rapid poleward transport of aerosol-enriched air masses, are presentedCombining AR and p-AAR can improve our understanding of the links between mid- and polar-latitudes, in the past, present and future climate
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view