SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reine Simen) srt2:(2006-2009)"

Sökning: WFRF:(Reine Simen) > (2006-2009)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Coriani, Sonia, et al. (författare)
  • Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory
  • 2007
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 126:15, s. 11930-11935
  • Tidskriftsartikel (refereegranskat)abstract
    • A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.
  •  
2.
  • Helgaker, Trygve, et al. (författare)
  • Self-consistent field methods applied to large molecular systems
  • 2006
  • Ingår i: RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B. - : VSP BV-C/O BRILL ACAD PUBL. - 9789004155428 ; , s. 1297-1297
  • Konferensbidrag (refereegranskat)abstract
    • With recent developments in theory and in implementation, Hartree-Fock and density-functional theory (DFT) self-consistent field (SCF) methods can now be applied to large molecular systems, at a cost that scales linearly with system size. In the present talk, such developments are reviewed, with emphasis on the calculation of energy and molecular properties. In particular, it is demonstrated that energies and molecular properties can now be determined entirely in the atomic orbital (AD) basis, with no implicit or explicit introduction of canonical molecular orbitals in the course of the calculation. After a discussion of energy optimization and convergence of the self-consistent field iterations, some applications are presented, with emphasis on polarizabilities and excitation energies and on the comparison of results obtained by Hartree-Fock and DFT theories in extended systems.
  •  
3.
  • Reine, Simen, et al. (författare)
  • Variational and robust density fitting of four-center two-electron integrals in local metrics
  • 2008
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 129:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
  •  
4.
  • Salek, Pawel, et al. (författare)
  • Linear-scaling implementation of molecular electronic self-consistent field theory
  • 2007
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 126:11, s. 85-98
  • Tidskriftsartikel (refereegranskat)abstract
    • A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field (SCF) theories is presented and illustrated with applications to molecules consisting of more than 1000 atoms. The diagonalization bottleneck of traditional SCF methods is avoided by carrying out a minimization of the Roothaan-Hall (RH) energy function and solving the Newton equations using the preconditioned conjugate-gradient (PCG) method. For rapid PCG convergence, the Lowdin orthogonal atomic orbital basis is used. The resulting linear-scaling trust-region Roothaan-Hall (LS-TRRH) method works by the introduction of a level-shift parameter in the RH Newton equations. A great advantage of the LS-TRRH method is that the optimal level shift can be determined at no extra cost, ensuring fast and robust convergence of both the SCF iterations and the level-shifted Newton equations. For density averaging, the authors use the trust-region density-subspace minimization (TRDSM) method, which, unlike the traditional direct inversion in the iterative subspace (DIIS) scheme, is firmly based on the principle of energy minimization. When combined with a linear-scaling evaluation of the Fock/Kohn-Sham matrix (including a boxed fitting of the electron density), LS-TRRH and TRDSM methods constitute the linear-scaling trust-region SCF (LS-TRSCF) method. The LS-TRSCF method compares favorably with the traditional SCF/DIIS scheme, converging smoothly and reliably in cases where the latter method fails. In one case where the LS-TRSCF method converges smoothly to a minimum, the SCF/DIIS method converges to a saddle point.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy