SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reiners A.) srt2:(2015-2019)"

Sökning: WFRF:(Reiners A.) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Morales, J. C., et al. (författare)
  • A giant exoplanet orbiting a very-low-mass star challenges planet formation models
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 365:6460, s. 1441-1445
  • Tidskriftsartikel (refereegranskat)abstract
    • Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.
  •  
2.
  • Marconi, A., et al. (författare)
  • EELT-HIRES the high-resolution spectrograph for the E-ELT
  • 2016
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VI. - : SPIE. - 9781510601963
  • Konferensbidrag (refereegranskat)abstract
    • The first generation of E-ELT instruments will include an optical infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet formation, physics and evolution of stars and galaxies, cosmology and fundamental physics. A 2-year long phase A study for EELT-HIRES has just started and will be performed by a consortium composed of institutes and organisations from Brazil, Chile, Denmark, France, Germany, Italy, Poland, Portugal, Spain, Sweden, Switzerland and United Kingdom. In this paper we describe the science goals and the preliminary technical concept for EELT-HIRES which will be developed during the phase A, as well as its planned development and consortium organisation during the study.
  •  
3.
  • Luque, R., et al. (författare)
  • Detection and characterization of an ultra-dense sub-Neptunian planet orbiting the Sun-like star K2-292
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of a new transiting planet from Campaign 17 of the Kepler extended mission K2. The planet K2-292 b is a warm sub-Neptune on a 17 day orbit around a bright (V = 9.9 mag) solar-like G3 V star with a mass and radius of M⋆ = 1.00 ± 0.03 M⊙ and R⋆ = 1.09 ± 0.03 R⊙, respectively. We modeled simultaneously the K2 photometry and CARMENES spectroscopic data and derived a radius of Rp=2.63-0.10+0.12 R⊕ and mass of Mp=24.5-4.4+4.4 M⊕, yielding a mean density of ρp=7.4-1.5+1.6 g cm-3, which makes it one of the densest sub-Neptunian planets known to date. We also detected a linear trend in the radial velocities of K2-292 (γ˙RV = -0.40-0.07+0.07 m s-1 d-1) that suggests a long-period companion with a minimum mass on the order of 33 M⊕. If confirmed, it would support a formation scenario of K2-292 b by migration caused by Kozai-Lidov oscillations.
  •  
4.
  • Palle, Enric, et al. (författare)
  • Detection and Doppler monitoring of K2-285 (EPIC 246471491), a system of four transiting planets smaller than Neptune
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Kepler extended mission, also known as K2, has provided the community with a wealth of planetary candidates that orbit stars typically much brighter than the targets of the original mission. These planet candidates are suitable for further spectroscopic follow-up and precise mass determinations, leading ultimately to the construction of empirical mass-radius diagrams. Particularly interesting is to constrain the properties of planets that are between Earth and Neptune in size, the most abundant type of planet orbiting Sun-like stars with periods of less than a few years. Aims. Among many other K2 candidates, we discovered a multi-planetary system around EPIC 246471491, referred to henceforth as K2-285, which contains four planets, ranging in size from twice the size of Earth to nearly the size of Neptune. We aim here at confirming their planetary nature and characterizing the properties of this system. Methods. We measure the mass of the planets of the K2-285 system by means of precise radial-velocity measurements using the CARMENES spectrograph and the HARPS-N spectrograph. Results. With our data we are able to determine the mass of the two inner planets of the system with a precision better than 15%, and place upper limits on the masses of the two outer planets. Conclusions. We find that K2-285b has a mass of M b = 9.68 -1.37+1.21 M · and a radius of R b = 2.59 -0.06+0.06 R · , yielding a mean density of ρ b = 3.07 -0.45+0.45 g cm -3 , while K2-285c has a mass of M c = 15.68 -2.13+2.28 M · , radius of R c = 3.53 -0.08+0.08 R · , and a mean density of ρ c = 1.95 -0.28+0.32 g cm -3 . For K2-285d (R d = 2.48 -0.06+0.06 R · ) and K2-285e (R e = 1.95 -0.05+0.05 R · ), the upper limits for the masses are 6.5 M · and 10.7 M · , respectively. The system is thus composed of an (almost) Neptune-twin planet (in mass and radius), two sub-Neptunes with very different densities and presumably bulk composition, and a fourth planet in the outermost orbit that resides right in the middle of the super-Earth/sub-Neptune radius gap. Future comparative planetology studies of this system would provide useful insights into planetary formation, and also a good test of atmospheric escape and evolution theories.
  •  
5.
  • Shulyak, D., et al. (författare)
  • Strong dipole magnetic fields in fast rotating fully convective stars
  • 2017
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 1:8
  • Tidskriftsartikel (refereegranskat)abstract
    • M dwarfs are the most numerous stars in our Galaxy, with masses between approximately 0.5 and 0.1 solar masses. Many of them show surface activity qualitatively similar to our Sun and generate flares, high X-ray fluxes and largescale magnetic fields(1-4). Such activity is driven by a dynamo powered by the convective motions in their interiors(2),(5-8). Understanding properties of stellar magnetic fields in these stars finds a broad application in astrophysics, including theory of stellar dynamos and environment conditions around planets that may be orbiting these stars. Most stars with convective envelopes follow a rotation-activity relationship where various activity indicators saturate in stars with rotation periods shorter than a few days(2,6,8). The activity gradually declines with rotation rate in stars rotating more slowly. It is thought that, due to a tight empirical correlation between X-ray radiance and magnetic flux(9), the stellar magnetic fields will also saturate, to values around 4kG (ref. (10)). Here we report the detection of magnetic fields above the presumed saturation limit in four fully convective M dwarfs. By combining results from spectroscopic and polarimetric studies, we explain our findings in terms of bistable dynamo models(11,12):stars with the strongest magnetic fields are those in a dipole dynamo state, whereas stars in a multipole state cannot generate fields stronger than about 4kG. Our study provides observational evidence that the dynamo in fully convective M dwarfs generates magnetic fields that can differ not only in the geometry of their large-scale component, but also in the total magnetic energy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy