SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reinhard D) srt2:(2005-2009)"

Sökning: WFRF:(Reinhard D) > (2005-2009)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Champion, Mia D, et al. (författare)
  • Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies
  • 2009
  • Ingår i: PLoS pathogens. - : Public Library of Science (PLoS). - 1553-7374. ; 5:5, s. e1000459-
  • Tidskriftsartikel (refereegranskat)abstract
    • Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.
  •  
3.
  • Richards, Stephen, et al. (författare)
  • The genome of the model beetle and pest Tribolium castaneum.
  • 2008
  • Ingår i: Nature. - 1476-4687. ; 452:7190, s. 949-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Tribolium castaneum is a representative of earth’s most numerous eukaryotic order, a powerful model organism for the study of generalized insect development, and also an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved an ability to interact with a diverse chemical environment as evidenced by large expansions in odorant and gustatory receptors, as well as p450 and other detoxification enzymes. Developmental patterns in Tribolium are more representative of other arthropods than those found in Drosophila, a fact represented in gene content and function. For one, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, and some are expressed in the growth zone crucial for axial elongation in short germ development. Systemic RNAi in T. castaneum appears to use mechanisms distinct from those found in C. elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
  •  
4.
  • Fleck, Tatjana, et al. (författare)
  • The management of deep sternal wound infections using vacuum assisted closure (V.A.C.) therapy
  • 2006
  • Ingår i: International Wound Journal. - 1742-481X. ; 3:4, s. 273-280
  • Tidskriftsartikel (refereegranskat)abstract
    • A group of international experts met in May 2006 to develop clinical guidelines on the practical application of vacuum assisted closure (V.A.C.)+ therapy in deep sternal wound infections. Group discussion and an anonymous interactive voting system were used to develop content. The recommendations are based on current evidence or, where this was not available, the majority consensus of the international group. The principles of treatment for deep sternal wound infections include early recognition and treatment of infection. V.A.C. therapy should be instigated early, following thorough wound irrigation and surgical debridement. V.A.C. therapy in deep sternal wound infections requires specialist surgical supervision and should only be undertaken by clinicians with adequate experience and training in the use of the technique.
  •  
5.
  • Ma, Li-Jun, et al. (författare)
  • Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication.
  • 2009
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 5:7, s. e1000549-
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called "zygomycetes," R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99-880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin-proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14alpha-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.
  •  
6.
  •  
7.
  • Zaccai, Nathan R., et al. (författare)
  • Crystallographic and in silico analysis of the sialoside-binding characteristics of the Siglec sialoadhesin
  • 2007
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 365:5, s. 1469-1479
  • Tidskriftsartikel (refereegranskat)abstract
    • The Siglec family of receptors mediates cell-surface interactions through recognition of sialylated glycoconjugates. Previously reported structures of the N-terminal domain of the Siglec sialoadhesin (SnD1) in complex with various sialic acid analogs revealed the structural template for sialic acid binding. To characterize further the carbohydrate-binding properties, we have determined the crystal structures of SnD1 in the absence of ligand, and in complex with 2-benzyl-Neu5NPro and 2-benzyl-Neu5NAc. These structures reveal that SnD1 undergoes very few structural changes on ligand binding and detail how two novel classes of sialic acid analogs bind, one of which unexpectedly can induce Siglec dimerization. In conjunction with in silico analysis, this set of structures informs us about the design of putative ligands with enhanced binding affinities and specificities to different Siglecs, and provides data with which to test the effectiveness of different computational drug design protocols.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy