SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renard S) srt2:(2005-2009)"

Sökning: WFRF:(Renard S) > (2005-2009)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamodt, K., et al. (författare)
  • The ALICE experiment at the CERN LHC
  • 2008
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Forskningsöversikt (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
2.
  •  
3.
  • Jégou, F., et al. (författare)
  • Validation of Odin/SMR limb observations of ozone, comparisons with OSIRIS, POAM III, ground-based and balloon-borne intruments
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:13, s. 3385-3409
  • Tidskriftsartikel (refereegranskat)abstract
    • The Odin satellite carries two instruments capable of determining stratospheric ozone profiles by limb sounding: the Sub-Millimetre Radiometer (SMR) and the UV-visible spectrograph of the OSIRIS (Optical Spectrograph and InfraRed Imager System) instrument. A large number of ozone profiles measurements were performed during six years from November 2001 to present. This ozone dataset is here used to make quantitative comparisons with satellite measurements in order to assess the quality of the Odin/SMR ozone measurements. In a first step, we compare Swedish SMR retrievals version 2.1, French SMR ozone retrievals version 222 (both from the 501.8 GHz band), and the OSIRIS retrievals version 3.0, with the operational version 4.0 ozone product from POAM III (Polar Ozone Atmospheric Measurement). In a second step, we refine the Odin/SMR validation by comparisons with ground-based instruments and balloon-borne observations. We use observations carried out within the framework of the Network for Detection of Atmospheric Composition Change (NDACC) and balloon flight missions conducted by the Canadian Space Agency (CSA), the Laboratoire de Physique et de Chimie de l\'{}Environnement (LPCE, Orléans, France), and the Service d'Aéronomie (SA, Paris, France). Coincidence criteria were 5° in latitude×10° in longitude, and 5 h in time in Odin/POAM III comparisons, 12 h in Odin/NDACC comparisons, and 72 h in Odin/balloons comparisons. An agreement is found with the POAM III experiment (10–60 km) within −0.3±0.2 ppmv (bias±standard deviation) for SMR (v222, v2.1) and within −0.5±0.2 ppmv for OSIRIS (v3.0). Odin ozone mixing ratio products are systematically slightly lower than the POAM III data and show an ozone maximum lower by 1–5 km in altitude. The comparisons with the NDACC data (10–34 km for ozonesonde, 10–50 km for lidar, 10–60 for microwave instruments) yield a good agreement within −0.15±0.3 ppmv for the SMR data and −0.3±0.3 ppmv for the OSIRIS data. Finally the comparisons with instruments on large balloons (10–31 km) show a good agreement, within −0.7±1 ppmv. The official SMR v2.1 dataset is consistent in all altitude ranges with POAM III, NDACC and large balloon-borne instruments measurements. In the SMR v2.1 data, no different systematic error has been found in the 0–35km range in comparison with the 35–60 km range. The same feature has been highlighted in both hemispheres in SMR v2.1/POAM III intercomparisons, and no latitudinal dependence has been revealed in SMR v2.1/NDACC intercomparisons.
  •  
4.
  •  
5.
  • S:t Clair Renard, Susanne, 1953- (författare)
  • Fri rörlighet för tjänster : tolkning av artikel 49 EGF
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is concerned with the free movement of services and the interpretation of article 49. The application of article 49 foremost includes all activities within the EC law concept of services, which is to be understood as cross-border economic activities for which the regulations of the other freedoms cannot be applied. As a result of the residual function and the fact that the common market includes all aspects of trade and economy article 49 is applicable to a heterogenic variety of economic activities.The ambit of article 49 has been increasingly widened. National laws regulating not only service activities but also associated legal areas, such as legislation involving national taxation and labour regulations, which indirectly affect the conditions for service activities are within the scope of article 49.This work examines the case law of the Court of Justice and suggests an interpretation of article 49 that differentiates between the actual service activity, the associated legal areas and rights for providers and recipients of services. For service activities, article 49 is to be regarded as a total ban on all restrictions, discriminatory as well as non-discriminatory. The prohibition in article 49 should be interpreted widely, administrative measures and legislation in the service sectors may not in any way hinder or restrict the intra-state trade. As for service associated legal areas article 49 is to be regarded as an expression of the principle of non-discrimination. National legislation in areas such as taxation and procedural laws may not treat foreign services and service providers less favourable. Also rights for providers and recipients of services are confined to equal treatment. Providers and recipients of services from other member states shall benefit from the same rights as nationals.
  •  
6.
  • S:t Clair Renard, Susanne, 1953- (författare)
  • Hur fri blev tjänsters fria rörlighet?
  • 2009
  • Ingår i: Hur gemensam är den europeiska gemenskapen?. - Stockholm : Santérus Academic Press Sweden. - 9789173590297
  • Bokkapitel (refereegranskat)
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy