SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renault Kristina) srt2:(2015-2019)"

Sökning: WFRF:(Renault Kristina) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Jia, et al. (författare)
  • An Organic Catalyst for Li-O-2 Batteries : Dilithium Quinone-1,4-Dicarboxylate
  • 2015
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 8:13, s. 2198-2203
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid organic electrocatalysts have hardly been tested in Li-O-2 batteries. Here, a new solid organic electrocatalyst, dilithium quinone-1,4-dicarboxylate (Li2C8H2O6) is presented, which is expected to overcome the shortcomings of inorganic catalysts. The function-oriented synthesis is low cost and low polluting. The electrocatalytic performance is evaluated by following the degradation of Li2O2 during the charge process in a Li-O-2 cell through insitu XRD and operando synchrotron radiation powder XRD (SR-PXD) measurements. The results indicate that the electrocatalytic activity of Li2C8H2O6 is similar to that of commercial Pt. The Li2O2 decomposition in a cell with Li2C8H2O6 catalyst follows a pseudo-zero-order reaction, virtually without any side reactions. These results provide an insight into the development of new organic catalysts for the oxygen evolution reaction (OER) in Li-O-2 batteries.
  •  
2.
  • Renault, Stevén, et al. (författare)
  • Dilithium 2-aminoterephthalate as a negative electrode material for lithium-ion batteries
  • 2017
  • Ingår i: Solid State Ionics. - : Elsevier BV. - 0167-2738 .- 1872-7689. ; 307, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents the synthesis and characterization of a novel organic Li-battery anode material: dilithium 2-aminoterephthalate (C8H5Li2NO4). When investigated in Li half-cells, the resulting electrodes show stable capacities around ca. 180 mAh g− 1 and promising rate capabilities, with battery performance at 500 mA g− 1 and good capacity recovery, despite being an asymmetric compound. DFT calculations indicate a preferential lithiation on carboxylates close to the amino group.
  •  
3.
  •  
4.
  •  
5.
  • Renault, Stéven, et al. (författare)
  • Superlithiation of Organic Electrode Materials : The Case of Dilithium Benzenedipropiolate
  • 2016
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 28:6, s. 1920-1926
  • Tidskriftsartikel (refereegranskat)abstract
    • Dilithium benzenedipropiolate was prepared and investigated as a potential negative electrode material for secondary lithium-ion batteries. In addition to the expected reduction of its carbonyls, this material can reduce and reversibly oxidize its unsaturated carbon–carbon bonds leading to a Li/C ratio of 1/1 and a specific capacity as high as 1363 mAh g–1: the highest ever reported for a lithium carboxylate. Density functional theory calculations suggest that the lithiation is preferential on the propiolate carbons.
  •  
6.
  • Rogozińska, Ewelina, et al. (författare)
  • Effects of antenatal diet and physical activity on maternal and fetal outcomes : Individual patient data meta-analysis and health economic evaluation
  • 2017
  • Ingår i: Health Technology Assessment. - : National Institute for Health Research. - 1366-5278 .- 2046-4924. ; 21:41
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Diet- and physical activity-based interventions in pregnancy have the potential to alter maternal and child outcomes. Objectives: To assess whether or not the effects of diet and lifestyle interventions vary in subgroups of women, based on maternal body mass index (BMI), age, parity, Caucasian ethnicity and underlying medical condition(s), by undertaking an individual patient data (IPD) meta-analysis. We also evaluated the association of gestational weight gain (GWG) with adverse pregnancy outcomes and assessed the cost-effectiveness of the interventions. Data sources: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Database of Abstracts of Reviews of Effects and Health Technology Assessment database were searched from October 2013 to March 2015 (to update a previous search). Review methods: Researchers from the International Weight Management in Pregnancy Collaborative Network shared the primary data. For each intervention type and outcome, we performed a two-step IPD random-effects meta-analysis, for all women (except underweight) combined and for each subgroup of interest, to obtain summary estimates of effects and 95% confidence intervals (CIs), and synthesised the differences in effects between subgroups. In the first stage, we fitted a linear regression adjusted for baseline (for continuous outcomes) or a logistic regression model (for binary outcomes) in each study separately; estimates were combined across studies using random-effects meta-analysis models. We quantified the relationship between weight gain and complications, and undertook a decision-analytic model-based economic evaluation to assess the cost-effectiveness of the interventions. Results: Diet and lifestyle interventions reduced GWG by an average of 0.70 kg (95% CI-0.92 to-0.48 kg; 33 studies, 9320 women). The effects on composite maternal outcome [summary odds ratio (OR) 0.90, 95% CI 0.79 to 1.03; 24 studies, 8852 women] and composite fetal/neonatal outcome (summary OR 0.94, 95% CI 0.83 to 1.08; 18 studies, 7981 women) were not significant. The effect did not vary with baseline BMI, age, ethnicity, parity or underlying medical conditions for GWG, and composite maternal and fetal outcomes. Lifestyle interventions reduce Caesarean sections (OR 0.91, 95% CI 0.83 to 0.99), but not other individual maternal outcomes such as gestational diabetes mellitus (OR 0.89, 95% CI 0.72 to 1.10), pre-eclampsia or pregnancy-induced hypertension (OR 0.95, 95% CI 0.78 to 1.16) and preterm birth (OR 0.94, 95% CI 0.78 to 1.13). There was no significant effect on fetal outcomes. The interventions were not cost-effective. GWG, including adherence to the Institute of Medicine-recommended targets, was not associated with a reduction in complications. Predictors of GWG were maternal age (summary estimate-0.10 kg, 95% CI-0.14 to-0.06 kg) and multiparity (summary estimate-0.73 kg, 95% CI-1.24 to-0.23 kg). Limitations: The findings were limited by the lack of standardisation in the components of intervention, residual heterogeneity in effects across studies for most analyses and the unavailability of IPD in some studies. Conclusion: Diet and lifestyle interventions in pregnancy are clinically effective in reducing GWG irrespective of risk factors, with no effects on composite maternal and fetal outcomes. Future work: The differential effects of lifestyle interventions on individual pregnancy outcomes need evaluation. Study registration: This study is registered as PROSPERO CRD42013003804.
  •  
7.
  • Xu, Chao, et al. (författare)
  • LiTDI : A Highly Efficient Additive for Electrolyte Stabilization in Lithium-Ion Batteries
  • 2017
  • Ingår i: Chemistry of Materials. - : AMER CHEMICAL SOC. - 0897-4756 .- 1520-5002. ; 29:5, s. 2254-2263
  • Tidskriftsartikel (refereegranskat)abstract
    • The poor stability of LiPF6-based electrolytes has always been a bottleneck for conventional lithium-ion batteries. The presence of inevitable trace amounts of moisture and the operation of batteries at elevated temperatures are particularly detrimental to electrolyte stability. Here, lithium 2trifluoromethy1-4,5-dicyanoimidazole (LiTDI) is investigated as a moisture-scavenging electrolyte additive and can sufficiently suppress the hydrolysis of LiPF6. With 2 wt % LiTDI, no LiPF6 degradation can be detected after storage for 35 days, even though the water level in the electrolyte is enriched by 2000 ppm. An improved thermal stability is also obtained by employing the LiTDI additive, and the moisture-scavenging mechanism is discussed. The beneficial effects of the LiTDI additive on battery performance are demonstrated by the enhanced capacity retention of both the LiNi1/3Mn1/3Co1/3O2 (NMC)/Li and NMC/graphite cells at 55 degrees C. In particular, the increase in cell voltage hysteresis is greatly hindered when LiTDI is presented in the electrolyte. Further development of the LiTDI additive may allow the improvement of elevated-temperature batteries, as well as energy savings by reducing the amount of effort necessary for dehydration of battery components.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy