SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renault Steven) srt2:(2017)"

Sökning: WFRF:(Renault Steven) > (2017)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Renault, Stevén, et al. (författare)
  • Dilithium 2-aminoterephthalate as a negative electrode material for lithium-ion batteries
  • 2017
  • Ingår i: Solid State Ionics. - : Elsevier BV. - 0167-2738 .- 1872-7689. ; 307, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents the synthesis and characterization of a novel organic Li-battery anode material: dilithium 2-aminoterephthalate (C8H5Li2NO4). When investigated in Li half-cells, the resulting electrodes show stable capacities around ca. 180 mAh g− 1 and promising rate capabilities, with battery performance at 500 mA g− 1 and good capacity recovery, despite being an asymmetric compound. DFT calculations indicate a preferential lithiation on carboxylates close to the amino group.
  •  
3.
  • Xu, Chao, et al. (författare)
  • LiTDI : A Highly Efficient Additive for Electrolyte Stabilization in Lithium-Ion Batteries
  • 2017
  • Ingår i: Chemistry of Materials. - : AMER CHEMICAL SOC. - 0897-4756 .- 1520-5002. ; 29:5, s. 2254-2263
  • Tidskriftsartikel (refereegranskat)abstract
    • The poor stability of LiPF6-based electrolytes has always been a bottleneck for conventional lithium-ion batteries. The presence of inevitable trace amounts of moisture and the operation of batteries at elevated temperatures are particularly detrimental to electrolyte stability. Here, lithium 2trifluoromethy1-4,5-dicyanoimidazole (LiTDI) is investigated as a moisture-scavenging electrolyte additive and can sufficiently suppress the hydrolysis of LiPF6. With 2 wt % LiTDI, no LiPF6 degradation can be detected after storage for 35 days, even though the water level in the electrolyte is enriched by 2000 ppm. An improved thermal stability is also obtained by employing the LiTDI additive, and the moisture-scavenging mechanism is discussed. The beneficial effects of the LiTDI additive on battery performance are demonstrated by the enhanced capacity retention of both the LiNi1/3Mn1/3Co1/3O2 (NMC)/Li and NMC/graphite cells at 55 degrees C. In particular, the increase in cell voltage hysteresis is greatly hindered when LiTDI is presented in the electrolyte. Further development of the LiTDI additive may allow the improvement of elevated-temperature batteries, as well as energy savings by reducing the amount of effort necessary for dehydration of battery components.
  •  
4.
  • Åkerlund, Lisa, 1986-, et al. (författare)
  • The Proton Trap Technology - Toward High Potential Quinone-Based Organic Energy Storage
  • 2017
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6832 .- 1614-6840. ; 7:20
  • Tidskriftsartikel (refereegranskat)abstract
    • An organic cathode material based on a copolymer of poly(3,4-ethylenedioxythiophene) containing pyridine and hydroquinone functionalities is described as a proton trap technology. Utilizing the quinone to hydroquinone redox conversion, this technology leads to electrode materials compatible with lithium and sodium cycling chemistries. These materials have high inherent potentials that in combination with lithium give a reversible output voltage of above 3.5 V (vs Li0/+) without relying on lithiation of the material, something that is not showed for quinones previously. Key to success stems from coupling an intrapolymeric proton transfer, realized by an incorporated pyridine proton donor/acceptor functionality, with the hydroquinone redox reactions. Trapping of protons in the cathode material effectively decouples the quinone redox chemistry from the cycling chemistry of the anode, which makes the material insensitive to the nature of the electrolyte cation and hence compatible with several anode materials. Furthermore, the conducting polymer backbone allows assembly without any additives for electronic conductivity. The concept is demonstrated by electrochemical characterization in several electrolytes and finally by employing the proton trap material as the cathode in lithium and sodium batteries. These findings represent a new concept for enabling high potential organic materials for the next generation of energy storage systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy