SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renström Erik) srt2:(1995-1999)"

Sökning: WFRF:(Renström Erik) > (1995-1999)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barg, Sebastian, et al. (författare)
  • The stimulatory action of tolbutamide on Ca2+-dependent exocytosis in pancreatic beta cells is mediated by a 65-kDa mdr-like P-glycoprotein
  • 1999
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 96:10, s. 5539-5544
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracellular application of the sulfonylurea tolbutamide during whole-cell patch-clamp recordings stimulated exocytosis >5-fold when applied at a cytoplasmic Ca2+ concentration of 0.17 microM. This effect was not detectable in the complete absence of cytoplasmic Ca2+ and when exocytosis was elicited by guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). The stimulatory action could be antagonized by the sulfonamide diazoxide, by the Cl--channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), by intracellular application of the antibody JSB1 [originally raised against a 170-kDa multidrug resistance (mdr) protein], and by tamoxifen (an inhibitor of the mdr- and volume-regulated Cl- channels). Immunocytochemistry and Western blot analyses revealed that JSB1 recognizes a 65-kDa protein in the secretory granules. This protein exhibited no detectable binding of sulfonylureas and is distinct from the 140-kDa sulfonylurea high-affinity sulfonylurea receptors also present in the granules. We conclude that (i) tolbutamide stimulates Ca2+-dependent exocytosis secondary to its binding to a 140-kDa high-affinity sulfonylurea receptor in the secretory granules; and (ii) a granular 65-kDa mdr-like protein mediates the action. The processes thus initiated culminate in the activation of a granular Cl- conductance. We speculate that the activation of granular Cl- fluxes promotes exocytosis (possibly by providing the energy required for membrane fusion) by inducing water uptake and an increased intragranular hydrostatic pressure.
  •  
2.
  • Bokvist, K, et al. (författare)
  • Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells
  • 1995
  • Ingår i: EMBO Journal. - 1460-2075. ; 14:1, s. 50-57
  • Tidskriftsartikel (refereegranskat)abstract
    • We have monitored L-type Ca2+ channel activity, local cytoplasmic Ca2+ transients, the distribution of insulin-containing secretory granules and exocytosis in individual mouse pancreatic B-cells. Subsequent to the opening of the Ca2+ channels, exocytosis is initiated with a latency < 100 ms. The entry of Ca2+ that precedes exocytosis is unevenly distributed over the cell and is concentrated to the region with the highest density of secretory granules. In this region, the cytoplasmic Ca2+ concentration is 5- to 10-fold higher than in the remainder of the cell reaching concentrations of several micromolar. Single-channel recordings confirm that the L-type Ca2+ channels are clustered in the part of the cell containing the secretory granules. This arrangement, which is obviously reminiscent of the 'active zones' in nerve terminals, can be envisaged as being favourable to the B-cell as it ensures that the Ca2+ transient is maximal and restricted to the part of the cell where it is required to rapidly initiate exocytosis whilst at the same time minimizing the expenditure of metabolic energy to subsequently restore the resting Ca2+ concentration.
  •  
3.
  • Eliasson, Lena, et al. (författare)
  • PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells
  • 1996
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 271:5250, s. 813-815
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoglycemic sulfonylureas represent a group of clinically useful antidiabetic compounds that stimulate insulin secretion from pancreatic beta cells. The molecular mechanisms involved are not fully understood but are believed to involve inhibition of potassium channels sensitive to adenosine triphosphate (KATP channels) in the beta cell membrane, causing membrane depolarization, calcium influx, and activation of the secretory machinery. In addition to these effects, sulfonylureas also promoted exocytosis by direct interaction with the secretory machinery not involving closure of the plasma membrane KATP channels. This effect was dependent on protein kinase C (PKC) and was observed at therapeutic concentrations of sulfonylureas, which suggests that it contributes to their hypoglycemic action in diabetics.
  •  
4.
  • Gromada, Jesper, et al. (författare)
  • CaM kinase II-dependent mobilization of secretory granules underlies acetylcholine-induced stimulation of exocytosis in mouse pancreatic B-cells
  • 1999
  • Ingår i: Journal of Physiology. - 1469-7793. ; 518:3, s. 745-759
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Measurements of cell capacitance were used to investigate the mechanisms by which acetylcholine (ACh) stimulates Ca2+-induced exocytosis in single insulin-secreting mouse pancreatic B-cells. 2. ACh (250 microM) increased exocytotic responses elicited by voltage-clamp depolarizations 2.3-fold. This effect was mediated by activation of muscarinic receptors and dependent on elevation of the cytoplasmic Ca2+ concentration ([Ca2+]i) attributable to mobilization of Ca2+ from intracellular stores. The latter action involved interference with the buffering of [Ca2+]i and the time constant (tau) for the recovery of [Ca2+]i following a voltage-clamp depolarization increased 5-fold. As a result, Ca2+ was present at concentrations sufficient to promote the replenishment of the readily releasable pool of granules (RRP; > 0.2 microM) for much longer periods in the presence than in the absence of the agonist. 3. The effect of Ca2+ on exocytosis was mediated by activation of CaM kinase II, but not protein kinase C, and involved both an increased size of the RRP from 40 to 140 granules and a decrease in tau for the refilling of the RRP from 31 to 19 s. 4. Collectively, the effects of ACh on the RRP and tau result in a > 10-fold stimulation of the rate at which granules are supplied for release.
  •  
5.
  • Gromada, J, et al. (författare)
  • Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization
  • 1995
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 44:7, s. 767-774
  • Tidskriftsartikel (refereegranskat)abstract
    • In the insulin-secreting beta-cell line beta TC3, stimulation with 11.2 mmol/l glucose caused a rise in the intracellular free Ca2+ concentration ([Ca2+]i) in only 18% of the tested cells. The number of glucose-responsive cells increased after pretreatment of the cells with glucagon-like peptide I (GLP-I)(7-36)amide and at 10(-11) mol/l; 84% of the cells responded to glucose with a rise in [Ca2+]i. GLP-I(7-36)amide induces a rapid increase in [Ca2+]i only in cells exposed to elevated glucose concentrations (> or = 5.6 mmol/l). The action of GLP-I(7-36)amide and forskolin involved a 10-fold increase in cytoplasmic cAMP concentration and was mediated by activation of protein kinase A. It was not associated with an effect on the membrane potential but required some (small) initial entry of Ca2+ through voltage-dependent L-type Ca2+ channels, which then produced a further increase in [Ca2+]i by mobilization from intracellular stores. The latter effect reflected Ca(2+)-induced Ca2+ release and was blocked by ryanodine. Similar increases in [Ca2+]i were also observed in voltage-clamped cells, although there was neither activation of a background (Ca(2+)-permeable) inward current nor enhancement of the voltage-dependent L-type Ca2+ current. These observations are consistent with GLP-I(7-36) amide inducing glucose sensitivity by promoting mobilization of Ca2+ from intracellular stores. We propose that this novel action of GLP-I(7-36)amide represents an important factor contributing to its insulinotropic action.
  •  
6.
  • Göpel, Sven, et al. (författare)
  • Activation of Ca(2+)-dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells
  • 1999
  • Ingår i: Journal of General Physiology. - 0022-1295 .- 1540-7748. ; 114:6, s. 759-770
  • Tidskriftsartikel (refereegranskat)abstract
    • We have applied the perforated patch whole-cell technique to beta cells within intact pancreatic islets to identify the current underlying the glucose-induced rhythmic firing of action potentials. Trains of depolarizations (to simulate glucose-induced electrical activity) resulted in the gradual (time constant: 2.3 s) development of a small (<0.8 nS) K(+) conductance. The current was dependent on Ca(2+) influx but unaffected by apamin and charybdotoxin, two blockers of Ca(2+)-activated K(+) channels, and was insensitive to tolbutamide (a blocker of ATP-regulated K(+) channels) but partially (>60%) blocked by high (10-20 mM) concentrations of tetraethylammonium. Upon cessation of electrical stimulation, the current deactivated exponentially with a time constant of 6.5 s. This is similar to the interval between two successive bursts of action potentials. We propose that this Ca(2+)-activated K(+) current plays an important role in the generation of oscillatory electrical activity in the beta cell.
  •  
7.
  • Lebrun, Philippe, et al. (författare)
  • Dynamics of the cationic, bioelectrical and secretory responses to formycin A in pancreatic islet cells
  • 1996
  • Ingår i: Pflügers Archiv. - 0031-6768. ; 431:3, s. 353-362
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of the cationic, bioelectrical and secretory responses to formycin A were monitored in pancreatic islet cells in order to assess whether this adenosine analogue, which is known to be converted to formycin A 5'-triphosphate in isolated islets, triggers the same sequence of ionic events as that otherwise involved in the process of nutrient-stimulated insulin release and currently attributed to an increase in adenosine 5'-triphosphate (ATP) generation rate. Unexpectedly, formycin A first increased 86Rb outflow, decreased 45Ca outflow and inhibited insulin release from prelabelled islets perifused at physiological or higher concentrations of D-glucose. This early inhibitory effect of formycin A upon insulin release coincided, in perforated patch whole-cell recordings, with an initial transient increase of ATP-sensitive K+ channel activity. A positive secretory response to formycin A, still not associated with any decrease in K+ conductance, was only observed either immediately after formycin A administration to islets already exposed to glibenclamide or during prolonged exposure to the adenosine analogue. This coincided with an increase of cytosolic Ca2+ concentration in intact B-cells and a greater increase of membrane capacitance in response to depolarization in B-cells examined in the perforated patch whole-cell configuration. The latter stimulation of exocytotic activity could not be attributed, however, to any increase in peak or integrated Ca2+ current. Thus, the mode of action of formycin A, or its 5'-triphosphate ester, in islet cells obviously differs from that currently ascribed to endogenous ATP in the process of nutrient-stimulated insulin release.
  •  
8.
  • Rorsman, Patrik, et al. (författare)
  • Cell biology. Glutamate primes the pump
  • 1999
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 402:6762, s. 595-596
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  •  
10.
  • Wiser, O, et al. (författare)
  • The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery
  • 1999
  • Ingår i: Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 96:1, s. 248-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Although N- and P-type Ca2+ channels predominant in fast-secreting systems, Lc-type Ca2+ channels (C-class) can play a similar role in certain secretory cells and synapses. For example, in retinal bipolar cells, Ca2+ entry through the Lc channels triggers ultrafast exocytosis, and in pancreatic beta-cells, evoked secretion is highly sensitive to Ca2+. These findings suggest that a rapidly release pool of vesicles colocalizes with the Ca2+ channels to allow high Ca2+ concentration and a tight coupling of the Lc channels at the release site. In binding studies, we show that the Lc channel is physically associated with synaptotagmin (p65) and the soluble N-ethylmaleimide-sensitive attachment proteins receptors: syntaxin and synaptosomal-associated protein of 25 kDa. Soluble N-ethylmaleimide-sensitive attachent proteins receptors coexpressed in Xenopus oocytes along with the Lc channel modify the kinetic properties of the channel. The modulatory action of syntaxin can be overcome by coexpressing p65, where at a certain ratio of p65/syntaxin, the channel regains its unaltered kinetic parameters. The cytosolic region of the channel, Lc753-893, separating repeats II-III of its alpha1C subunit, interacts with p65 and "pulls" down native p65 from rat brain membranes. Lc753-893 injected into single insulin-secreting beta-cell, inhibits secretion in response to channel opening, but not in response to photolysis of caged Ca2+, nor does it affect Ca2+ current. These results suggest that Lc753-893 competes with the endogenous channel for the synaptic proteins and disrupts the spatial coupling with the secretory apparatus. The molecular organization of the Lc channel and the secretory machinery into a multiprotein complex (named excitosome) appears to be essential for an effective depolarization evoked exocytosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy