SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Richards D) srt2:(1995-1999)"

Sökning: WFRF:(Richards D) > (1995-1999)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrés, E., et al. (författare)
  • Status of the AMANDA experiment
  • 1999
  • Ingår i: Nuclear physics B, Proceedings supplements. - : Elsevier. - 0920-5632 .- 1873-3832. ; 70:1-3, s. 448-452
  • Tidskriftsartikel (refereegranskat)abstract
    • The AMANDA high energy neutrino telescope has successfully been increased in size from four detector strings to ten detector strings during the 1996/1997 season. The first upward going muon-neutrino candidates have been reconstructed from the 1996 year's four-string data. Three new detector strings will be deployed during 1997/1998 to 2350 metres depth.
  •  
2.
  •  
3.
  • Miller, T. C., et al. (författare)
  • Particle astrophysics in antarctica
  • 1996
  • Ingår i: International School of Cosmic Ray Astrophysics: 10th Course: Toward the Millennium in Astrophysics: Problems and Prospects 16-26 Jun 1996. Erice, Italy. ; , s. 157-166
  • Konferensbidrag (refereegranskat)
  •  
4.
  •  
5.
  • Bergstrom, L., et al. (författare)
  • The AMANDA experiment : Status and prospects for indirect dark matter detection
  • 1996
  • Ingår i: The identification of dark matter. Proceedings, 1st International Workshop, Sheffield, UK, September 8-12, 1996. ; , s. 521-528
  • Konferensbidrag (refereegranskat)abstract
    • At the AMANDA South Pole site, four new holes were drilled to depths 2050m to 2180 m and instrumented with 86 photomultipliers (PMTs) at depths1520-2000 m. Of these PMTs 79 are working, with 4-ns timing resolutionand noise rates 300 to 600 Hz. Various diagnostic devices were deployedand are working. An observed factor 60 increase in scattering length anda sharpening of the distribution of arrival times of laser pulses relative tomeasurements at 800-1000 m showed that bubbles are absent below 1500 m.Absorption lengths are 100 to 150 m at wavelengths in the blue and UV to337 nm. Muon coincidences are seen between the SPASE air shower arrayand the AMANDA PMTs at 800-1000 m and 1500-1900 m. The muon trackrate is 30 Hz for 8-fold triggers and 10 Hz for 10-fold triggers. The presentarray is the nucleus for a future expanded array. The potential of AMANDAfor SUSY dark matter search through the detection of high-energy neutrinosfrom the centre of the Sun or Earth is discussed.
  •  
6.
  • Hulth, P. O., et al. (författare)
  • The AMANDA experiment
  • 1996
  • Ingår i: Neutrino '96. Proceedings, 17th International Conference on Neutrino Physics and Astrophysics, Helsinki, Finland, June 13-19, 1996. ; , s. 518-523
  • Konferensbidrag (refereegranskat)abstract
    • At the AMANDA South Pole site, four new holes were drilled to depths 2050 m to 2180 m and instrumented with 86 photomultipliers (PMTs) at depths 1520-2000 m. Of these PMTs 79 are working, with 4-ns timing resolution and noise rates 300 to 600 Hz. Various diagnostic devices were deployed and are working. An observed factor 60 increase in scattering length and a sharpening of the distribution of arrival times of laser pulses relative to measurements at 800-1000 m showed that bubbles are absent below 1500 m. Absorption lengths are 100 to 150 m at wavelengths in the blue and UV to 337 nm. Muon coincidences are seen between the SPASE air shower array and the AMANDA PMTs at 800-1000 m and 1500-1900 m. The muon track rate is 30 Hz for 8-fold triggers and 10 Hz for 10-fold triggers. The present array is the nucleus for a future expanded array.
  •  
7.
  •  
8.
  •  
9.
  • Askebjer, P., et al. (författare)
  • AMANDA : status report from the 1993-94 campaign and optical properties of the South Pole ice
  • 1995
  • Ingår i: Nuclear physics B, Proceedings supplements. - : Elsevier. - 0920-5632 .- 1873-3832. ; 38:1-3, s. 287-292
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first results of the AMANDA detector. During the antarctic summer 1993-94 four strings were deployed between 0.8 an 1 km depth, each equipped with 20 photomultiplier tubes (PMTs). A laser source was used to investigate the optical properties of the ice in situ. We find that the ice is intrinsically extremely transparent. The measured absorption length is 59 ± 3 m, i.e. comparable with the quality of the ultra-pure water used in the IMB and Kamiokande proton-decay and neutrino experiments [1,2] and more than two times longer than the best value reported for laboratory ice [3]. Due to a residual density of air bubbles at these depths, the motion of photons in the medium is randomized. For spherical, smooth bubbles we find that, at 1 km depth, the average distance between collisions is about 25 cm. The measured inverse scattering length on bubbles decreases linearly with increasing depth in the volume of ice investigated. © 1995 Elsevier Science B.V. All rights reserved.
  •  
10.
  • Askebjer, P., et al. (författare)
  • On the age vs depth and optical clarity of deep ice at South Pole
  • 1995
  • Ingår i: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 41:139, s. 445-454
  • Tidskriftsartikel (refereegranskat)abstract
    • The first four strings of phototubes for the AMANDA high-energy neutrino observatory are now frozen in place at a depth of 800 to 1000 m in ice at the South Pole. During the 1995-96 season an additional six strings will be deployed at greater depths. Provided absorption, scattering, and refraction of visible light are sufficiently small, the trajectory of a muon into which a neutrino converts can be determined by using the array of phototubes to measure the arrival times of \v{C}erenkov light emitted by the muon. To help in deciding on the depth for implantation of the six new strings, we discuss models of age vs depth for South Pole ice, we estimate mean free paths for scattering from bubbles and dust as a function of depth, and we assess distortion of light paths due to refraction at crystal boundaries and interfaces between air-hydrate inclusions and normal ice. We conclude that the depth interval 1600 to 1800 m will be suitably transparent for the next six AMANDA strings and, moreover, that the interval 1600 to 2100 m will be suitably transparent for a future 1-km 3   observatory except possibly in a region a few tens of meters thick at a depth corresponding to a peak in the dust concentration at 60 kyr BP.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy