SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Richards J. Brent) srt2:(2020-2024)"

Sökning: WFRF:(Richards J. Brent) > (2020-2024)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Austin, Thomas R., et al. (författare)
  • A plasma protein-based risk score to predict hip fractures
  • 2024
  • Ingår i: NATURE AGING. - 2662-8465. ; 4, s. 1064-1075
  • Tidskriftsartikel (refereegranskat)abstract
    • As there are effective treatments to reduce hip fractures, identification of patients at high risk of hip fracture is important to inform efficient intervention strategies. To obtain a new tool for hip fracture prediction, we developed a protein-based risk score in the Cardiovascular Health Study using an aptamer-based proteomic platform. The proteomic risk score predicted incident hip fractures and improved hip fracture discrimination in two Tr & oslash;ndelag Health Study validation cohorts using the same aptamer-based platform. When transferred to an antibody-based proteomic platform in a UK Biobank validation cohort, the proteomic risk score was strongly associated with hip fractures (hazard ratio per s.d. increase, 1.64; 95% confidence interval 1.53-1.77). The proteomic risk score, but not available polygenic risk scores for fractures or bone mineral density, improved the C-index beyond the fracture risk assessment tool (FRAX), which integrates information from clinical risk factors (C-index, FRAX 0.735 versus FRAX + proteomic risk score 0.776). The developed proteomic risk score constitutes a new tool for stratifying patients according to hip fracture risk; however, its improvement in hip fracture discrimination is modest and its clinical utility beyond FRAX with information on femoral neck bone mineral density remains to be determined. The authors developed a proteomic risk score that improved the prediction of hip fractures in three validation cohorts analyzed by two different proteomic platforms. This risk score constitutes a new tool to stratify patients by hip fracture risk.
  •  
2.
  • Austin, Thomas R, et al. (författare)
  • Large-scale circulating proteome association study (CPAS) meta-analysis identifies circulating proteins and pathways predicting incident hip fractures.
  • 2024
  • Ingår i: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - 1523-4681. ; 39:2, s. 139-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. In an exploratory search of the underlying biology as reflected through the circulating proteome, we performed a comprehensive Circulating Proteome Association Study (CPAS) meta-analysis for incident hip fractures. Analyses included 6430 subjects from two prospective cohort studies (Cardiovascular Health Study and Trøndelag Health Study) with circulating proteomics data (aptamer-based 5K SomaScan version 4.0 assay; 4979 aptamers). Associations between circulating protein levels and incident hip fractures were estimated for each cohort using age and sex-adjusted Cox regression models. Participants experienced 643 incident hip fractures. Compared with the individual studies, inverse-variance weighted meta-analyses yielded more statistically significant associations, identifying 23 aptamers associated with incident hip fractures (conservative Bonferroni correction 0.05/4979, P<1.0×10-5). The aptamers most strongly associated with hip fracture risk corresponded to two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR. High levels of several inflammation-related proteins (CD14, CXCL12, MMP12, ITIH3) were also associated with increased hip fracture risk. Ingenuity pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. These analyses identified several circulating proteins and pathways consistently associated with incident hip fractures. These findings underscore the usefulness of the meta-analytic approach for comprehensive CPAS in a similar manner as has previously been observed for large-scale human genetic studies. Future studies should investigate the underlying biology of these potential novel drug targets.
  •  
3.
  • Smith-Byrne, Karl, et al. (författare)
  • Identifying therapeutic targets for cancer among 2074 circulating proteins and risk of nine cancers
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.
  •  
4.
  • Cruz, Raquel, et al. (författare)
  • Novel genes and sex differences in COVID-19 severity
  • 2022
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 31:22, s. 3789-3806
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.
  •  
5.
  • Smith-Byrne, Karl, et al. (författare)
  • Circulating Isovalerylcarnitine and Lung Cancer Risk : evidence from Mendelian Randomization and Prediagnostic Blood Measurements
  • 2022
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - 1055-9965 .- 1538-7755. ; 31:10, s. 1966-1974
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Tobacco exposure causes 8 of 10 lung cancers, and identifying additional risk factors is challenging due to confounding introduced by smoking in traditional observational studies.MATERIALS AND METHODS: We used Mendelian randomization (MR) to screen 207 metabolites for their role in lung cancer predisposition using independent genome-wide association studies (GWAS) of blood metabolite levels (n = 7,824) and lung cancer risk (n = 29,266 cases/56,450 controls). A nested case-control study (656 cases and 1,296 matched controls) was subsequently performed using prediagnostic blood samples to validate MR association with lung cancer incidence data from population-based cohorts (EPIC and NSHDS).RESULTS: An MR-based scan of 207 circulating metabolites for lung cancer risk identified that blood isovalerylcarnitine (IVC) was associated with a decreased odds of lung cancer after accounting for multiple testing (log10-OR = 0.43; 95% CI, 0.29-0.63). Molar measurement of IVC in prediagnostic blood found similar results (log10-OR = 0.39; 95% CI, 0.21-0.72). Results were consistent across lung cancer subtypes.CONCLUSIONS: Independent lines of evidence support an inverse association of elevated circulating IVC with lung cancer risk through a novel methodologic approach that integrates genetic and traditional epidemiology to efficiently identify novel cancer biomarkers.IMPACT: Our results find compelling evidence in favor of a protective role for a circulating metabolite, IVC, in lung cancer etiology. From the treatment of a Mendelian disease, isovaleric acidemia, we know that circulating IVC is modifiable through a restricted protein diet or glycine and L-carnatine supplementation. IVC may represent a modifiable and inversely associated biomarker for lung cancer.
  •  
6.
  • Yoshiji, Satoshi, et al. (författare)
  • Proteome-wide Mendelian randomization implicates nephronectin as an actionable mediator of the effect of obesity on COVID-19 severity
  • 2023
  • Ingår i: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 5, s. 248-264
  • Tidskriftsartikel (refereegranskat)abstract
    • How obesity contributes to COVID-19 severity is not fully understood. In this study, Yoshiji et al. found that the plasma protein nephronectin partially mediates the effect of obesity on the risk of COVID-19 severity using a two-step Mendelian randomization approach and omics analyses. Obesity is a major risk factor for Coronavirus disease (COVID-19) severity; however, the mechanisms underlying this relationship are not fully understood. As obesity influences the plasma proteome, we sought to identify circulating proteins mediating the effects of obesity on COVID-19 severity in humans. Here, we screened 4,907 plasma proteins to identify proteins influenced by body mass index using Mendelian randomization. This yielded 1,216 proteins, whose effect on COVID-19 severity was assessed, again using Mendelian randomization. We found that an s.d. increase in nephronectin (NPNT) was associated with increased odds of critically ill COVID-19 (OR = 1.71, P = 1.63 x 10(-10)). The effect was driven by an NPNT splice isoform. Mediation analyses supported NPNT as a mediator. In single-cell RNA-sequencing, NPNT was expressed in alveolar cells and fibroblasts of the lung in individuals who died of COVID-19. Finally, decreasing body fat mass and increasing fat-free mass were found to lower NPNT levels. These findings provide actionable insights into how obesity influences COVID-19 severity.
  •  
7.
  • Barrueta Tenhunen, Annelie, et al. (författare)
  • Metabolomic pattern associated with physical sequelae in patients presenting with respiratory symptoms validates the aestivation concept in dehydrated patients
  • 2024
  • Ingår i: Physiological Genomics. - : American Physiological Society. - 1094-8341 .- 1531-2267. ; 56:7, s. 483-491
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypertonic dehydration is associated with muscle wasting and synthesis of organic osmolytes. We recently showed a metabolic shift to amino acid production and urea cycle activation in coronavirus-2019 (COVID-19), consistent with the aestivation response. The aim of the present investigation was to validate the metabolic shift and development of long-term physical outcomes in the non-COVID cohort of the Biobanque Qu & eacute;b & eacute;coise de la COVID-19 (BQC19). We included 824 patients from BQC19, where 571 patients had data of dehydration in the form of estimated osmolality (eOSM = 2Na + 2K + glucose + urea), and 284 patients had metabolome data and long-term follow-up. We correlated the degree of dehydration to mortality, invasive mechanical ventilation, acute kidney injury, and long-term symptoms. As found in the COVID cohort, higher eOSM correlated with a higher proportion of urea and glucose of total eOSM, and an enrichment of amino acids compared with other metabolites. Sex-stratified analysis indicated that women may show a weaker aestivation response. More severe dehydration was associated with mortality, invasive mechanical ventilation, and acute kidney injury during the acute illness. Importantly, more severe dehydration was associated with physical long-term symptoms but not mental long-term symptoms after adjustment for age, sex, and disease severity. Patients with water deficit in the form of increased eOSM tend to have more severe disease and experience more physical symptoms after an acute episode of care. This is associated with amino acid and urea production, indicating dehydration-induced muscle wasting.
  •  
8.
  • Brunet-Ratnasingham, Elsa, et al. (författare)
  • Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized COVID-19 patients. Integrated analysis using k-means reveal four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors are delineated by high and low antibody responses. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the “Interferon paradox” previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.
  •  
9.
  • Brunet-Ratnasingham, Elsa, et al. (författare)
  • Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity.
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15:1, s. 4177-
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.
  •  
10.
  • Butler-Laporte, Guillaume, et al. (författare)
  • HLA allele-calling using whole-exome sequencing identifies 129 novel associations in 11 autoimmune diseases: a multi-ancestry analysis in the UK Biobank
  • 2023
  • Ingår i: Communicaitons Biology. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (refereegranskat)abstract
    • The human leukocyte antigen (HLA) region on chromosome 6 is strongly associated with many immune-mediated and infection-related diseases. Due to its highly polymorphic nature and complex linkage disequilibrium patterns, traditional genetic association studies of single nucleotide polymorphisms (SNPs) do not perform well in this region. Instead, the field has adopted the assessment of the association of HLA alleles (i.e., entire HLA gene haplotypes) with disease. Often based on genotyping arrays, these association studies impute HLA alleles, decreasing accuracy and thus statistical power for rare alleles and in non-European ancestries. Here, we use whole-exome sequencing (WES) from 454,824 UK Biobank participants to directly call HLA alleles using the HLA- HD algorithm. We show this method is more accurate than imputing HLA alleles and harness the improved statistical power to identify 360 associations for 11 auto-immune phenotypes (at least 129 likely novel), leading to better insights into the specific coding polymorphisms that underlie these diseases. We show that HLA alleles with synonymous variants, often overlooked in HLA studies, can significantly influence these phenotypes. Lastly, we show that HLA sequencing may improve polygenic risk scores accuracy across ancestries. These findings allow better characterization of the role of the HLA region in human disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (14)
annan publikation (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Richards, J. Brent (12)
Butler-Laporte, Guil ... (8)
Frithiof, Robert (7)
Hultström, Michael, ... (6)
Lipcsey, Miklós (5)
Lu, Tianyuan (5)
visa fler...
Larsson, Anders (3)
Nethander, Maria, 19 ... (3)
Ohlsson, Claes, 1965 (3)
Langhammer, Arnulf (3)
Grahnemo, Louise (3)
Gabrielsen, Maiken E ... (3)
Hveem, Kristian (3)
Coward, Eivind (3)
Alarcón-Riquelme, Ma ... (2)
Karlsen, Tom H (2)
Zheng, Jie (2)
Travis, Ruth C (2)
Martin, Richard M (2)
Johansson, Mattias (2)
Ganna, Andrea (2)
Langenberg, Claudia (2)
Jonasson, Christian (2)
Smith-Byrne, Karl (2)
Brennan, Paul (2)
Afilalo, Jonathan (2)
Sun, Yan V. (2)
Schulte, Eva C (2)
Törnqvist, Anna E (2)
Fernandez-Cadenas, I ... (2)
Prati, Daniele (2)
Valenti, Luca (2)
Morrison, David R. (2)
García, Federico (2)
Romero-Gomez, Manuel (2)
Psaty, Bruce M (2)
Asselta, Rosanna (2)
Duga, Stefano (2)
Austin, Thomas R. (2)
Fink, Howard A. (2)
Jalal, Diana I. (2)
Buzkova, Petra (2)
Barzilay, Joshua I. (2)
Carbone, Laura (2)
Kizer, Jorge R. (2)
Mukamal, Kenneth J. (2)
Gerszten, Robert E. (2)
Robbins, John A. (2)
Skogholt, Anne Heidi (2)
Valderrabano, Rodrig ... (2)
visa färre...
Lärosäte
Uppsala universitet (11)
Karolinska Institutet (7)
Göteborgs universitet (3)
Umeå universitet (3)
Lunds universitet (1)
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy