SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rigamonti D) srt2:(2022)"

Sökning: WFRF:(Rigamonti D) > (2022)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Munk, P., et al. (författare)
  • Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention.
  •  
5.
  • Nocente, M., et al. (författare)
  • Fusion product measurements by nuclear diagnostics in the Joint European Torus deuterium-tritium 2 campaign (invited)
  • 2022
  • Ingår i: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 93:9
  • Tidskriftsartikel (refereegranskat)abstract
    • A new deuterium-tritium experimental, DTE2, campaign has been conducted at the Joint European Torus (JET) between August 2021 and late December 2021. Motivated by significant enhancements in the past decade at JET, such as the ITER-like wall and enhanced auxiliary heating power, the campaign achieved a new fusion energy world record and performed a broad range of fundamental experiments to inform ITER physics scenarios and operations. New capabilities in the area of fusion product measurements by nuclear diagnostics were available as a result of a decade long enhancement program. These have been tested for the first time in DTE2 and a concise overview is provided here. Confined alpha particle measurements by gamma-ray spectroscopy were successfully demonstrated, albeit with limitations at neutron rates higher than some 10(17) n/s. High resolution neutron spectroscopy measurements with the magnetic proton recoil instrument were complemented by novel data from a set of synthetic diamond detectors, which enabled studies of the supra-thermal contributions to the neutron emission. In the area of escaping fast ion diagnostics, a lost fast ion detector and a set of Faraday cups made it possible to determine information on the velocity space and poloidal distribution of the lost alpha particles for the first time. This extensive set of data provides unique information for fundamental physics studies and validation of the numerical models, which are key to inform the physics and scenarios of ITER. Published under an exclusive license by AIP Publishing.
  •  
6.
  • Giacomelli, L., et al. (författare)
  • Overview on the progress of the conceptual studies of a gamma ray spectrometer instrument for DEMO
  • 2022
  • Ingår i: Journal of Instrumentation. - : IOP Publishing Ltd. - 1748-0221. ; 17:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The future DEMO tokamak will be equipped with a suite of diagnostics which will operate as sensors to monitor and control the position and operation parameters of DT plasmas. Among the suite of sensors, an integrated neutron and gamma-ray diagnostic system is also studied to verify its capability and performance in detecting possible DEMO plasma position variations and contribute to the feedback system in maintaining DEMO DT plasma in stable conditions. This work describes the progress of the conceptual study of the gamma-ray diagnostic for DEMO reactor performed during the first Work-Package contract 2015-2020. The reaction of interest for this Gamma-Ray Spectrometer Instrument (GRSI) consists of D(T, gamma)He-5 with the emission of 16.63 MeV gamma rays. Due to DEMO tokamak design constraints, the gamma and neutron diagnostics are integrated, both featuring multi-line of sight (camera type), viewing DEMO plasma radially with vertical (12) and horizontal (13) viewing lines to diagnose the. and neutron emission from the DT plasma poloidal section. The GRSI design is based on the investigation of the reaction cross sections, on the calculations performed with GENESIS and MCNP simulation codes and on the physics and geometry constrains of the integrated instrument. GRSI features long collimators which diameters are constrained by the neutron flux at the neutron detectors of the Radial Neutron Camera (RNC) system placed in front, which are key to control DEMO DT plasma position. For these reasons, only few GRSI parameters can be independently selected to optimize its performance. Among these, the choice of the collimator diameters at the back side of the neutron detector box up to the GRSI detector, the use of LiH neutron attenuators in front of the GRSI detectors, the GRSI detector material and shielding. The GRSI detector is based on commercial LaBr3(Ce) inorganic scintillating crystal coupled with a photomultiplier tube or a silicon photomultiplier. They are designed to operate at high count rate although GRSI geometry constraints severely impact on this feature. The GRSI can also provide an independent assessment of DEMO DT fusion power and T burning.
  •  
7.
  • Kiptily, V. G., et al. (författare)
  • Excitation of Alfven eigenmodes by fusion-born alpha-particles in D-He-3 plasmas on JET
  • 2022
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing Ltd. - 0741-3335 .- 1361-6587. ; 64:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Alfven eigenmode (AE) instabilities driven by alpha-particles have been observed in D-He-3 fusion experiments on the Joint European Torus (JET) with the ITER-like wall. For the efficient generation of fusion alpha-particles from D-He-3 fusion reaction, the three-ion radio frequency scenario was used to accelerate the neutral beam injection 100 keV deuterons to higher energies in the core of mixed D-He-3 plasmas at high concentrations of He-3. A large variety of fast-ion driven magnetohydrodynamic modes were observed, including the elliptical Alfven eigenmodes (EAEs) with mode numbers n = -1 and axisymmetric modes with n = 0 in the frequency range of EAEs. The simultaneous observation of these modes indicates the presence of rather strong alpha-particle population in the plasma with a 'bump-on-tail' shaped velocity distribution. Linear stability analysis and Fokker-Planck calculations support the observations. Experimental evidence of the AEs excitation by fusion-born alpha-particles in the D-He-3 plasma is provided by neutron and gamma-ray diagnostics as well as fast-ion loss measurements. We discuss an experimental proposal for the planned full-scale D-T plasma experiments on JET based on the physics insights gained from these experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy