SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roberts Nigel) srt2:(2020-2023)"

Sökning: WFRF:(Roberts Nigel) > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fehmi, Janev, et al. (författare)
  • Contactin-1 links autoimmune neuropathy and membranous glomerulonephritis
  • 2023
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 18:3 March
  • Tidskriftsartikel (refereegranskat)abstract
    • Membranous glomerulonephritis (MGN) is a common cause of nephrotic syndrome in adults, mediated by glomerular antibody deposition to an increasing number of newly recognised antigens. Previous case reports have suggested an association between patients with anti-contactin-1 (CNTN1)-mediated neuropathies and MGN. In an observational study we investigated the pathobiology and extent of this potential cause of MGN by examining the association of antibodies against CNTN1 with the clinical features of a cohort of 468 patients with suspected immune-mediated neuropathies, 295 with idiopathic MGN, and 256 controls. Neuronal and glomerular binding of patient IgG, serum CNTN1 antibody and protein levels, as well as immune-complex deposition were determined. We identified 15 patients with immune-mediated neuropathy and concurrent nephrotic syndrome (biopsy proven MGN in 12/12), and 4 patients with isolated MGN from an idiopathic MGN cohort, all seropositive for IgG4 CNTN1 antibodies. CNTN1-containing immune complexes were found in the renal glomeruli of patients with CNTN1 antibodies, but not in control kidneys. CNTN1 peptides were identified in glomeruli by mass spectroscopy. CNTN1 seropositive patients were largely resistant to first-line neuropathy treatments but achieved a good outcome with escalation therapies. Neurological and renal function improved in parallel with suppressed antibody titres. The reason for isolated MGN without clinical neuropathy is unclear. We show that CNTN1, found in peripheral nerves and kidney glomeruli, is a common target for autoantibody-mediated pathology and may account for between 1 and 2% of idiopathic MGN cases. Greater awareness of this cross-system syndrome should facilitate earlier diagnosis and more timely use of effective treatment.
  •  
2.
  •  
3.
  • Olijnik, Aude-Anais, et al. (författare)
  • Genetic and functional insights into CDA-I prevalence and pathogenesis
  • 2021
  • Ingår i: Journal of Medical Genetics. - : BMJ Publishing Group Ltd. - 0022-2593 .- 1468-6244. ; 58:3, s. 185-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Congenital dyserythropoietic anaemia type I (CDA-I) is a hereditary anaemia caused by biallelic mutations in the widely expressed genes CDAN1 and C15orf41. Little is understood about either protein and it is unclear in which cellular pathways they participate. Methods Genetic analysis of a cohort of patients with CDA-I identifies novel pathogenic variants in both known causative genes. We analyse the mutation distribution and the predicted structural positioning of amino acids affected in Codanin-1, the protein encoded by CDAN1. Using western blotting, immunoprecipitation and immunofluorescence, we determine the effect of particular mutations on both proteins and interrogate protein interaction, stability and subcellular localisation. Results We identify six novel CDAN1 mutations and one novel mutation in C15orf41 and uncover evidence of further genetic heterogeneity in CDA-I. Additionally, population genetics suggests that CDA-I is more common than currently predicted. Mutations are enriched in six clusters in Codanin-1 and tend to affect buried residues. Many missense and in-frame mutations do not destabilise the entire protein. Rather C15orf41 relies on Codanin-1 for stability and both proteins, which are enriched in the nucleolus, interact to form an obligate complex in cells. Conclusion Stability and interaction data suggest that C15orf41 may be the key determinant of CDA-I and offer insight into the mechanism underlying this disease. Both proteins share a common pathway likely to be present in a wide variety of cell types; however, nucleolar enrichment may provide a clue as to the erythroid specific nature of CDA-I. The surprisingly high predicted incidence of CDA-I suggests that better ascertainment would lead to improved patient care.
  •  
4.
  • Wang, Tianyan, et al. (författare)
  • PIP5K1α is Required for Promoting Tumor Progression in Castration-Resistant Prostate Cancer
  • 2022
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media S.A.. - 2296-634X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • PIP5K1α has emerged as a promising drug target for the treatment of castration-resistant prostate cancer (CRPC), as it acts upstream of the PI3K/AKT signaling pathway to promote prostate cancer (PCa) growth, survival and invasion. However, little is known of the molecular actions of PIP5K1α in this process. Here, we show that siRNA-mediated knockdown of PIP5K1α and blockade of PIP5K1α action using its small molecule inhibitor ISA-2011B suppress growth and invasion of CRPC cells. We demonstrate that targeted deletion of the N-terminal domain of PIP5K1α in CRPC cells results in reduced growth and migratory ability of cancer cells. Further, the xenograft tumors lacking the N-terminal domain of PIP5K1α exhibited reduced tumor growth and aggressiveness in xenograft mice as compared to that of controls. The N-terminal domain of PIP5K1α is required for regulation of mRNA expression and protein stability of PIP5K1α. This suggests that the expression and oncogenic activity of PIP5K1α are in part dependent on its N-terminal domain. We further show that PIP5K1α acts as an upstream regulator of the androgen receptor (AR) and AR target genes including CDK1 and MMP9 that are key factors promoting growth, survival and invasion of PCa cells. ISA-2011B exhibited a significant inhibitory effect on AR target genes including CDK1 and MMP9 in CRPC cells with wild-type PIP5K1α and in CRPC cells lacking the N-terminal domain of PIP5K1α. These results indicate that the growth of PIP5K1α-dependent tumors is in part dependent on the integrity of the N-terminal sequence of this kinase. Our study identifies a novel functional mechanism involving PIP5K1α, confirming that PIP5K1α is an intriguing target for cancer treatment, especially for treatment of CRPC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy