SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rodhe Henning) srt2:(2010-2014)"

Sökning: WFRF:(Rodhe Henning) > (2010-2014)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bender, Frida, et al. (författare)
  • Response to the eruption of Mount Pinatubo in relation to climate sensitivity in the CMIP3 models
  • 2010
  • Ingår i: Climate Dynamics. - : Springer. - 0930-7575 .- 1432-0894. ; 35:5, s. 875-886
  • Tidskriftsartikel (refereegranskat)abstract
    • The radiative flux perturbations and subsequent temperature responses in relation to the eruption of Mount Pinatubo in 1991 are studied in the ten general circulation models incorporated in the Coupled Model Intercomparison Project, phase 3 (CMIP3), that include a parameterization of volcanic aerosol. Models and observations show decreases in global mean temperature of up to 0.5 K, in response to radiative perturbations of up to 10 W m−2, averaged over the tropics. The time scale representing the delay between radiative perturbation and temperature response is determined by the slow ocean response, and is estimated to be centered around 4 months in the models. Although the magniude of the temperature response to a volcanic eruption has previously been used as an indicator of equilibrium climate sensitivity in models, we find these two quantities to be only weakly correlated. This may partly be due to the fact that the size of the volcano-induced radiative perturbation varies among the models. It is found that the magnitude of the modelled radiative perturbation increases with decreasing climate sensitivity, with the exception of one outlying model. Therefore, we scale the temperature perturbation by the radiative perturbation in each model, and use the ratio between the integrated temperature perturbation and the integrated radiative perturbation as a measure of sensitivity to volcanic forcing. This ratio is found to be well correlated with the model climate sensitivity, more sensitive models having a larger ratio. Further, if this correspondence between “volcanic sensitivity” and sensitivity to CO2 forcing is a feature not only among the models, but also of the real climate system, the alleged linear relation can be used to estimate the real climate sensitivity. The observational value of the ratio signifying volcanic sensitivity is hereby estimated to correspond to an equilibrium climate sensitivity, i.e. equilibrium temperature increase due to a doubling of the CO2 concentration, between 1.7 and 4.1 K. Several sources of uncertainty reside in the method applied, and it is pointed out that additional model output, related to ocean heat storage and radiative forcing, could refine the analysis, as could reduced uncertainty in the observational record, of temperature as well as forcing.
  •  
2.
  • Budhavant, K. B., et al. (författare)
  • Chemical composition of the inorganic fraction of cloud-water at a high altitude site in West India
  • 2014
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 88, s. 59-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from a ground-based cloud-water collection system intercepting water from clouds at a mountain field station, Sinhagad near Pune in India are presented. This study was part of an Indo-Swedish Collaboration Project on Atmospheric Brown Cloud-Asia (ABC-A). Cloud-water and rainwater (wet-only) samples were collected during June 2007-Dec. 2010. Concentrations of major anions and cations were determined. Ion concentrations were generally higher (NO3-, about 8 times; SO42- and K+, 5 times; NH4+ times and Cl-, Na+, Ca2+, Mg2+ 3 times) in cloud-water samples than in rainwater samples collected during the same days. The average pH of cloud-water samples was 6.0 with about 20% of the values below 5.6 and only 4% less than 5.0. Despite high concentrations of SO42- and NO3- the cloud water samples were on average not more acidic than rainwater samples. This is different from most of the other studies of cloud-water composition which have noted a substantially higher acidity (i.e. lower pH) in cloud-water than in rainwater. The slightly alkaline (pH > 5.6) nature of the cloud-water samples is mainly due to the presence of soil derived calcium carbonate in quantities more than enough to neutralize the acids or their precursors. A separation of the cloud-water data into trajectory groups showed that samples in air-masses having spent the last few days over the Indian sub-continent were in general more acidic (due to anthropogenic emissions) than those collected during days with air-masses of marine origin. A high correlation mutually between Ca2+, Na+, NO3- and SO42- makes it difficult to estimate the contribution to SO42- from different sources. Anthropogenic SO2- emissions and soil dust may both give important contributions.
  •  
3.
  • Das, Ruby, et al. (författare)
  • Chemical composition of rainwater at Maldives Climate Observatory at Hanimaadhoo (MCOH)
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:8, s. 3743-3755
  • Tidskriftsartikel (refereegranskat)abstract
    • Water-soluble inorganic components in rain deposited at the Maldives Climate Observatory Hanimaadhoo (MCOH) were examined to determine seasonality and possible source regions. The study, which is part of the Atmospheric Brown Cloud (ABC) project, covers the period June 2005 to December 2007. Air mass trajectories were used to separate the data into situations with transport of air from India and adjacent parts of the Asian continent during the months December and January (Indian group) and those with southerly flow from the Indian Ocean during the summer monsoon season June to September (Marine group). A third trajectory group was identified with transport from the northern parts of the Arabian Sea and adjacent land areas during the months March, April and October (Arabian Sea group). The concentrations of nss-SO(4)(2-), NH(4)(+) and NO(3)(-) were more than a factor of 4 higher in the Indian group than in the Marine group. The average rainwater pH was significantly lower in the Indian group (4.7) than in the Marine group (6.0). This shows a pronounced influence of continental pollutants during December and January. The origin of the very high concentration of nss-Ca(2+) found in the Marine group - a factor of 7 higher than in the Indian group - is unclear. We discuss various possibilities including long-range transport from the African or Australian continents, local dust from nearby islands and calcareous plankton debris and exopolymer gels emitted from the ocean surface. The occurrence of NO(3)(-) and NH(4)(+) in the Marine group suggests emissions from the ocean surface. Part of the NO(3)(-) could also be associated with lightning over the ocean. Despite the fact that the concentrations of nss-SO(4)(2-), NO(3)(-), and NH(4)(+) were highest in the Indian group the wet deposition was at least as big in the Marine group reflecting the larger amount of rainfall during the monsoon season. The annual wet deposition of NO(3)(-), NH(4)(+) and nss-SO(4)(2-) at MCOH is about a factor of three lower than observed at rural sites in India.
  •  
4.
  • Granat, Lennart, et al. (författare)
  • Light Absorbing Material ("Soot") in Rainwater and in aerosol particles in the Maldives
  • 2010
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union.. - 0148-0227 .- 2156-2202. ; 115, s. D16307-
  • Tidskriftsartikel (refereegranskat)abstract
    • Simultaneous measurements of soot (absorbing material at 528 nm) and inorganic ions in aerosol and precipitation at the Maldives Climate Observatory Hanimaadhoo during the period May 2005 to February 2007 have made it possible to calculate the washout ratio (WR) of these components as a measure of how efficiently they are scavenged by precipitation. Based on air trajectories the data have been separated into days with polluted air arriving from the Indian subcontinent in a north-easterly sector during winter and clean monsoon days with southerly flow from the Indian Ocean. The average soot concentration was a factor of ten higher in the former situations. Despite considerable scatter for individual days a systematic pattern emerged when the WR for the different components were compared with each other. During the monsoon season the WR for soot was similar to that of sulphate and other fine mode aerosol components, indicating that soot containing particles in these situations were efficient as cloud condensation nuclei. The origin of the light absorbing material during the monsoon season is unclear. We speculate that light absorbing material from the tropical ocean surface could contribute to the concentration of "soot" during the monsoon season. During the polluted winter days, on the other hand, the WR for soot was 3 times smaller than that of sulphate. This indicates that, even after a travel time of several days, the soot containing particles from India have retained much of their hydrophobic property and that the soot must be mainly externally mixed. The low WR and the infrequent rain during this season probably contribute to extending the atmospheric lifetime of soot well beyond several days. Surprisingly high concentrations of non sea salt calcium were measured during the monsoon season, substantially higher than during the winter season. The origin of these high values might be long-range transport from the Australian or African continents. Another possibility might be exopolymer gels derived from the ocean surface micro-layer.
  •  
5.
  • Kleman, Johan, et al. (författare)
  • Rubbat förtroende för forskarna
  • 2010
  • Ingår i: Svenska Dagbladet. - 1101-2412. ; :25 maj
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
6.
  • Rodhe, Henning, 1941- (författare)
  • Black carbon particles spread over large areas
  • 2010
  • Ingår i: Black Carbon e-Bulletin. - Nairobi : United Nations Environment Programme. ; 2:3, s. 1-2
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
7.
  • Rodhe, Henning (författare)
  • De vita partiklarnas förbannelse
  • 2012
  • Ingår i: Forskning och framsteg. - 0015-7937. ; :2, s. 15-17
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
8.
  •  
9.
  • Schwartz, Stephen E., et al. (författare)
  • Earth's Climate Sensitivity : Apparent Inconsistencies in Recent Assessments
  • 2014
  • Ingår i: Earths Future. - 2328-4277. ; 2:12, s. 601-605
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content. This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO2 given in AR5, 1.5-4.5 K/(3.7 W m(-2)) exceeds the range inferred from the assessed likely range of forcing, 1.2-2.9 K/(3.7 W m(-2)), where 3.7 W m(-2) denotes the forcing for doubled CO2. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.
  •  
10.
  • Schwartz, Stephen E., et al. (författare)
  • Why Hasn't Earth Warmed as Much as Expected?
  • 2010
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 23:10, s. 2453-2464
  • Tidskriftsartikel (refereegranskat)abstract
    • The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15%. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation, by empirical determination of the earth's climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluated by their performance over this period, is shown to require substantial reduction in the uncertainty of aerosol forcing over this period.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy