SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roghanian Mohammad) srt2:(2019)"

Sökning: WFRF:(Roghanian Mohammad) > (2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nielsen, Stine Vang, et al. (författare)
  • Serine-Threonine Kinases Encoded by Split hipA Homologs Inhibit Tryptophanyl-tRNA Synthetase
  • 2019
  • Ingår i: mBio. - : American Society for Microbiology. - 2161-2129 .- 2150-7511. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Type II toxin-antitoxin (TA) modules encode a stable toxin that inhibits cell growth and an unstable protein antitoxin that neutralizes the toxin by direct protein-protein contact. hipBA of Escherichia coli strain K-12 codes for HipA, a serinethreonine kinase that phosphorylates and inhibits glutamyl-tRNA synthetase. Induction of hipA inhibits charging of glutamyl-tRNA that, in turn, inhibits translation and induces RelA-dependent (p) ppGpp synthesis and multidrug tolerance. Here, we describe the discovery of a three-component TA gene family that encodes toxin HipT, which exhibits sequence similarity with the C-terminal part of HipA. A genetic screening revealed that trpS in high copy numbers suppresses HipT-mediated growth inhibition. We show that HipT of E. coli O127 is a kinase that phosphorylates tryptophanyl-tRNA synthetase in vitro at a conserved serine residue. Consistently, induction of hipT inhibits cell growth and stimulates production of (p) ppGpp. The gene immediately upstream from hipT, called hipS, encodes a small protein that exhibits sequence similarity with the N terminus of HipA. HipT kinase was neutralized by cognate HipS in vivo, whereas the third component, HipB, encoded by the first gene of the operon, did not counteract HipT kinase activity. However, HipB augmented the ability of HipS to neutralize HipT. Analysis of two additional hipBSThomologous modules showed that, indeed, HipS functions as an antitoxin in these cases also. Thus, hipBST constitutes a novel family of tricomponent TA modules where hipA has been split into two genes, hipS and hipT, that function as a novel type of TA pair.IMPORTANCE: Bacterial toxin-antitoxin (TA) modules confer multidrug tolerance (persistence) that may contribute to the recalcitrance of chronic and recurrent infections. The first high-persister gene identified was hipA of Escherichia coli strain K-12, which encodes a kinase that inhibits glutamyl-tRNA synthetase. The hipA gene encodes the toxin of the hipBA TA module, while hipB encodes an antitoxin that counteracts HipA. Here, we describe a novel, widespread TA gene family, hipBST, that encodes HipT, which exhibits sequence similarity with the C terminus of HipA. HipT is a kinase that phosphorylates tryptophanyl-tRNA synthetase and thereby inhibits translation and induces the stringent response. Thus, this new TA gene family may contribute to the survival and spread of bacterial pathogens.
  •  
2.
  • Sinha, Anurag Kumar, et al. (författare)
  • Fatty acid starvation activates RelA by depleting lysine precursor pyruvate
  • 2019
  • Ingår i: Molecular Microbiology. - : John Wiley & Sons. - 0950-382X .- 1365-2958. ; 112:4, s. 1339-1349
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteria undergoing nutrient starvation induce the ubiquitous stringent response, resulting in gross physiological changes that reprograms cell metabolism from fast to slow growth. The stringent response is mediated by the secondary messengers pppGpp and ppGpp collectively referred to as (p)ppGpp or 'alarmone'. In Escherichia coli, two paralogs, RelA and SpoT, synthesize (p)ppGpp. RelA is activated by amino acid starvation, whereas SpoT, which can also degrade (p)ppGpp, responds to fatty acid (FA), carbon and phosphate starvation. Here, we discover that FA starvation leads to rapid activation of RelA and reveal the underlying mechanism. We show that FA starvation leads to depletion of lysine that, in turn, leads to the accumulation of uncharged tRNA(Lys) and activation of RelA. SpoT was also activated by FA starvation but to a lower level and with a delayed kinetics. Next, we discovered that pyruvate, a precursor of lysine, is depleted by FA starvation. We also propose a mechanism that explains how FA starvation leads to pyruvate depletion. Together our results raise the possibility that RelA may be a major player under many starvation conditions previously thought to depend principally on SpoT. Interestingly, FA starvation provoked a similar to 100-fold increase in relA dependent ampicillin tolerance.
  •  
3.
  • Turnbull, Kathryn Jane, et al. (författare)
  • Intramolecular Interactions Dominate the Autoregulation of Escherichia coli Stringent Factor RelA
  • 2019
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Amino acid starvation in Escherichia coli activates the enzymatic activity of the stringent factor RelA, leading to accumulation of the alarmone nucleotide (p)ppGpp. The alarmone acts as an intercellular messenger to regulate transcription, translation and metabolism to mediate bacterial stress adaptation. The enzymatic activity of RelA is subject to multi-layered allosteric control executed both by ligands - such as "starved" ribosomal complexes, deacylated tRNA and pppGpp - and by individual RelA domains. The auto-regulation of RelA is proposed to act either in cis (inhibition of the enzymatic activity of the N-terminal region, NTD, by regulatory C-terminal region, CTD) or in trans (CTD-mediated dimerization leading to enzyme inhibition). In this report, we probed the regulatory roles of the individual domains of E. coli RelA and our results are not indicative of RelA dimerization being the key regulatory mechanism. First, at growth-permitting levels, ectopic expression of RelA CTD does not interfere with activation of native ReIA, indicating lack of regulation via inhibitory complex formation in the cell. Second, in our biochemical assays, increasing RelA concentration does not decrease the enzyme activity, as would be expected in the case of efficient auto-inhibition via dimerization. Third, while high-level CTD expression efficiently inhibits the growth, the effect is independent of native RelA and is mediated by direct inhibition of protein synthesis, likely via direct interaction with the ribosomal A-site. Finally, deletion of the RRM domain of the CTD region leads to growth inhibition mediated by accumulation of (p)ppGpp, suggesting de-regulation of the synthetic activity in this mutant.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy