SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rohrich D.) srt2:(2010)"

Sökning: WFRF:(Rohrich D.) > (2010)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamodt, K., et al. (författare)
  • Charged-Particle Multiplicity Density at Midrapidity in Central Pb-Pb Collisions at root s(NN)=2.76 TeV
  • 2010
  • Ingår i: Physical Review Letters. - 1079-7114. ; 105:25
  • Tidskriftsartikel (refereegranskat)abstract
    • The first measurement of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair root s(NN) = 2.76 TeV is presented. For an event sample corresponding to the most central 5% of the hadronic cross section, the pseudorapidity density of primary charged particles at midrapidity is 1584 +/- 4(stat) +/- 76(syst), which corresponds to 8.3 +/- 0.4(syst) per participating nucleon pair. This represents an increase of about a factor 1.9 relative to pp collisions at similar collision energies, and about a factor 2.2 to central Au-Au collisions at root s(NN) = 0.2 TeV. This measurement provides the first experimental constraint for models of nucleus-nucleus collisions at LHC energies.
  •  
2.
  • Aamodt, K., et al. (författare)
  • Elliptic Flow of Charged Particles in Pb-Pb Collisions at root s(NN)=2.76 TeV
  • 2010
  • Ingår i: Physical Review Letters. - 1079-7114. ; 105:25
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at root s(NN) p = 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (vertical bar eta vertical bar < 0.8) and transverse momentum range 0.2 < p(t) < 5.0 GeV/c. The elliptic flow signal v(2), measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 +/- 0.002(stat) +/- 0.003(syst) in the 40%-50% centrality class. The differential elliptic flow v(2)(p(t)) reaches a maximum of 0.2 near p(t) = 3 GeV/c. Compared to RHIC Au-Au collisions at root s(NN) = 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.
  •  
3.
  • Aamodt, K., et al. (författare)
  • Charged-particle multiplicity measurement in proton-proton collisions at root s=0.9 and 2.36 TeV with ALICE at LHC
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 68:1-2, s. 89-108
  • Tidskriftsartikel (refereegranskat)abstract
    • Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range vertical bar eta vertical bar < 1.4. In the central region (vertical bar eta vertical bar < 0.5), at 0.9 TeV, we measure charged-particle pseudo-rapidity density dN(ch)/d eta = 3.02 +/- 0.01(stat.)(-0.05)(+0.08)(syst.) for inelastic interactions, and dN(ch)/d eta = 3.58 +/- 0.01 (stat.)(-0.12)(+0.12)(syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dN(ch)/d eta = 3.77 +/- 0.01(stat.)(-0.12)(+0.25)(syst.) for inelastic, and dN(ch)/d eta = 4.43 +/- 0.01(stat.)(-0.12)(+0.17)(syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% +/- 0.5%(stat.)(-2.8)(+5.7)%(syst.) for inelastic and 23.7% +/- 0.5%(stat.)(-1.1)(+4.6)%(syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.
  •  
4.
  • Aamodt, K., et al. (författare)
  • First proton-proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at root s=900 GeV
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 65:1-2, s. 111-125
  • Tidskriftsartikel (refereegranskat)abstract
    • On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range vertical bar eta vertical bar < 0.5, we obtain dN(ch)/d eta = 3.10 +/- 0.13(stat.) +/- 0.22(syst.) for all inelastic interactions, and dN(ch)/d eta = 3.51 +/- 0.15(stat.) +/- 0.25(syst.) for nonsingle diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN Sp<(p)over bar>S collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.
  •  
5.
  • Aamodt, K., et al. (författare)
  • Charged-particle multiplicity measurement in proton-proton collisions at root s=7 TeV with ALICE at LHC
  • 2010
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 68:3-4, s. 345-354
  • Tidskriftsartikel (refereegranskat)abstract
    • The pseudorapidity density and multiplicity distribution of charged particles produced in proton-proton collisions at the LHC, at a centre-of-mass energy root s = 7 TeV, were measured in the central pseudorapidity region vertical bar eta vertical bar < 1. Comparisons are made with previous measurements at root s = 0.9 TeV and 2.36 TeV. At root s = 7 TeV, for events with at least one charged particle in |eta vertical bar| < 1, we obtain dN(ch)/d eta = 6.01 +/- 0.01(stat.)(-0.12)(+0.20) (syst.). This corresponds to an increase of 57.6%+/-0.4%(stat.)(-1.8%)(+3.6) (syst.) relative to collisions at 0.9 TeV, significantly higher than calculations from commonly used models. The multiplicity distribution at 7 TeV is described fairly well by the negative binomial distribution.
  •  
6.
  • Alme, J., et al. (författare)
  • The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events
  • 2010
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 622:1, s. 316-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m(3) and is operated in a 0.5T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb-Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report. (C) 2010 CERN for the benefit of the ALICE collaboration. Published by Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy