SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rolandsson Enes Sara) srt2:(2020-2024)"

Sökning: WFRF:(Rolandsson Enes Sara) > (2020-2024)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wasserstrom, Sebastian, et al. (författare)
  • Model visualization : from micro to macro
  • 2022
  • Ingår i: 3D lung models for regenerating lung tissue. - 9780323908719 ; , s. 207-221
  • Bokkapitel (refereegranskat)abstract
    • Because of increasing demand, rapid development of in vitro and in vivo models to be used to study lung regeneration and lung repair has occurred during the last years. Even if imaging has always been an important tool in diagnosing disease and validating models, the current disease models, including three-dimensional (3D) lung models, put a higher demand on advanced imaging techniques. Moreover, choosing the most relevant technique for a specific question is not a trivial task, and the rapid development of new techniques has not made this task easier. Therefore the aim of this chapter is to provide an overview of different advanced imaging techniques that can be used to evaluate and validate 3D lung models, to provide a discussion on the current state of the art, and to list the pros and cons of the available techniques.
  •  
2.
  • Cuevas Ocaña, Sara, et al. (författare)
  • ERS International Congress 2022 : highlights from the Basic and Translational Science Assembly
  • 2023
  • Ingår i: ERJ open research. - : European Respiratory Society (ERS). - 2312-0541. ; 9:2
  • Forskningsöversikt (refereegranskat)abstract
    • In this review, the Basic and Translational Science Assembly of the European Respiratory Society provides an overview of the 2022 International Congress highlights. We discuss the consequences of respiratory events from birth until old age regarding climate change related alterations in air quality due to pollution caused by increased ozone, pollen, wildfires and fuel combustion as well as the increasing presence of microplastic and microfibres. Early life events such as the effect of hyperoxia in the context of bronchopulmonary dysplasia and crucial effects of the intrauterine environment in the context of pre-eclampsia were discussed. The Human Lung Cell Atlas (HLCA) was put forward as a new point of reference for healthy human lungs. The combination of single-cell RNA sequencing and spatial data in the HLCA has enabled the discovery of new cell types/states and niches, and served as a platform that facilitates further investigation of mechanistic perturbations. The role of cell death modalities in regulating the onset and progression of chronic lung diseases and its potential as a therapeutic target was also discussed. Translational studies identified novel therapeutic targets and immunoregulatory mechanisms in asthma. Lastly, it was highlighted that the choice of regenerative therapy depends on disease severity, ranging from transplantation to cell therapies and regenerative pharmacology.
  •  
3.
  • 3D Lung Models for Regenerating Lung Tissue
  • 2022
  • Samlingsverk (redaktörskap) (refereegranskat)abstract
    • 3D Lung Models for Regenerating Lung Tissue is a comprehensive summary on the current state of art 3D lung models and novel techniques that can be used to regenerate lung tissue. Written by experts in the field, readers can expect to learn more about 3D lung models, novel techniques including bioprinting and advanced imaging techniques, as well as important knowledge about the complexity of the lung and its extracellular matrix composition.Structured into 15 different chapters, the book spans from the original 2D cell culture model on plastic, to advanced 3D lung models such as using human extracellular matrix protein. In addition, the last chapters cover new techniques including 3D printing, bioprinting, and artificial intelligence that can be used to drive the field forward and some future perspectives. This highly topical book with chapters on everything from the complexity of the lung and its microenvironment to cutting-edge 3D lung models, represents an exciting body of work that can be used by researchers during study design, grant writing, as teaching material, or to stay updated with the progression of the field.Key Features A comprehensive summary of advanced 3D lung models written by the experts in the respiratory field Explore novel techniques that can be used to evaluate and improve 3D lung models, including techniques such as 3D printing, bioprinting, and artificial intelligence Explains what extracellular matrix is, the complexity of the lung microenvironment, and why this knowledge is important for creating a functional bioartificial lung
  •  
4.
  • Abreu, Soraia Carvalho, et al. (författare)
  • Differential effects of the cystic fibrosis lung inflammatory environment on mesenchymal stromal cells
  • 2020
  • Ingår i: American Journal of Physiology: Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1040-0605 .- 1522-1504.
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing evidence demonstrates that human mesenchymal stromal cells (MSCs) modify their in vivo anti-inflammatory actions depending on the specific inflammatory environment encountered. Understanding this better is crucial to refine MSC-based cell therapies for lung and other diseases. Using acute exacerbations of cystic fibrosis (CF) lung disease as a model, the effects of ex vivo MSC exposure to clinical bronchoalveolar lavage fluid (BALF) samples, as a surrogate for the in vivo clinical lung environment, on MSC viability, gene expression, secreted cytokines, and mitochondrial function was compared to effects of BALF collected from healthy volunteers. CF BALF samples which cultured positive for Aspergillus sp. (Asp) induced rapid MSC death, usually within several hours of exposure. Further analyses suggested the fungal toxin gliotoxin as a potential mediator contributing to CF BALF-induced MSC death. RNA sequencing analyses of MSCs exposed to either Asp+ or Asp- CF BALF samples identified a number of differentially expressed transcripts, including those involved in interferon-signaling, anti-microbial gene expression, and cell death. Toxicity did not correlate with bacterial lung infections. These results suggest that the potential use of MSC-based cell therapies for CF or other lung diseases may not be warranted in the presence of Aspergillus.
  •  
5.
  • D. Ubags, Niki, et al. (författare)
  • ERS International Congress, Madrid, 2019: highlights from the Basic and translational Science Assembly
  • 2020
  • Ingår i: ERJ Open Research. - : European Respiratory Society (ERS). - 2312-0541. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this review, the Basic and Translational Sciences Assembly of the European Respiratory Society (ERS) provides an overview of the 2019 ERS International Congress highlights. In particular, we discuss how the novel and very promising technology of single cell sequencing has led to the development of a comprehensive map of the human lung, the lung cell atlas, including the discovery of novel cell types and new insights into cellular trajectories in lung health and disease. Further, we summarise recent insights in the field of respiratory infections, which can aid in a better understanding of the molecular mechanisms underlying these infections in order to develop novel vaccines and improved treatment options. Novel concepts delineating the early origins of lung disease are focused on the effects of pre- and post-natal exposures on neonatal lung development and long-term lung health. Moreover, we discuss how these early life exposures can affect the lung microbiome and respiratory infections. In addition, the importance of metabolomics and mitochondrial function analysis to subphenotype chronic lung disease patients according to their metabolic program is described. Finally, basic and translational respiratory science is rapidly moving forward and this will be beneficial for an advanced molecular understanding of the mechanisms underlying a variety of lung diseases. In the long-term this will aid in the development of novel therapeutic targeting strategies in the field of respiratory medicine.
  •  
6.
  • dos Santos, Claudia C., et al. (författare)
  • The MSC-EV-microRNAome : A Perspective on Therapeutic Mechanisms of Action in Sepsis and ARDS
  • 2024
  • Ingår i: Cells. - 2073-4409. ; 13:2
  • Forskningsöversikt (refereegranskat)abstract
    • Mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) have emerged as innovative therapeutic agents for the treatment of sepsis and acute respiratory distress syndrome (ARDS). Although their potential remains undisputed in pre-clinical models, this has yet to be translated to the clinic. In this review, we focused on the role of microRNAs contained in MSC-derived EVs, the EV microRNAome, and their potential contribution to therapeutic mechanisms of action. The evidence that miRNA transfer in MSC-derived EVs has a role in the overall therapeutic effects is compelling. However, several questions remain regarding how to reconcile the stochiometric issue of the low copy numbers of the miRNAs present in the EV particles, how different miRNAs delivered simultaneously interact with their targets within recipient cells, and the best miRNA or combination of miRNAs to use as therapy, potency markers, and biomarkers of efficacy in the clinic. Here, we offer a molecular genetics and systems biology perspective on the function of EV microRNAs, their contribution to mechanisms of action, and their therapeutic potential.
  •  
7.
  • Dunbar, Hazel, et al. (författare)
  • The inflammatory lung microenvironment; a key mediator in msc licensing
  • 2021
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 10:11
  • Forskningsöversikt (refereegranskat)abstract
    • Recent clinical trials of mesenchymal stromal cell (MSC) therapy for various inflammatory conditions have highlighted the significant benefit to patients who respond to MSC administration. Thus, there is strong interest in investigating MSC therapy in acute inflammatory lung conditions, such as acute respiratory distress syndrome (ARDS). Unfortunately, not all patients respond, and evidence now suggests that the differential disease microenvironment present across patients and sub-phenotypes of disease or across disease severities influences MSC licensing, function and therapeutic efficacy. Here, we discuss the importance of licensing MSCs and the need to better under-stand how the disease microenvironment influences MSC activation and therapeutic actions, in addition to the need for a patient-stratification approach.
  •  
8.
  • Elowsson Rendin, Linda, et al. (författare)
  • Harnessing the ECM Microenvironment to Ameliorate Mesenchymal Stromal Cell-Based Therapy in Chronic Lung Diseases
  • 2021
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • It is known that the cell environment such as biomechanical properties and extracellular matrix (ECM) composition dictate cell behaviour including migration, proliferation, and differentiation. Important constituents of the microenvironment, including ECM molecules such as proteoglycans and glycosaminoglycans (GAGs), determine events in both embryogenesis and repair of the adult lung. Mesenchymal stromal/stem cells (MSC) have been shown to have immunomodulatory properties and may be potent actors regulating tissue remodelling and regenerative cell responses upon lung injury. Using MSC in cell-based therapy holds promise for treatment of chronic lung diseases such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, so far clinical trials with MSCs in COPD have not had a significant impact on disease amelioration nor on IPF, where low cell survival rate and pulmonary retention time are major hurdles to overcome. Research shows that the microenvironment has a profound impact on transplanted MSCs. In our studies on acellular lung tissue slices (lung scaffolds) from IPF patients versus healthy individuals, we see a profound effect on cellular activity, where healthy cells cultured in diseased lung scaffolds adapt and produce proteins further promoting a diseased environment, whereas cells on healthy scaffolds sustain a healthy proteomic profile. Therefore, modulating the environmental context for cell-based therapy may be a potent way to improve treatment using MSCs. In this review, we will describe the importance of the microenvironment for cell-based therapy in chronic lung diseases, how MSC-ECM interactions can affect therapeutic output and describe current progress in the field of cell-based therapy.
  •  
9.
  • Enes, Sara Rolandsson, et al. (författare)
  • Healthy versus Inflamed Lung Environments Differentially Effect MSCs
  • 2021
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 58:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Despite increased interest in MSC-based cell therapies for the acute respiratory distress syndrome (ARDS), clinical investigations have not yet been successful and understanding of the potential in vivo mechanisms of MSC actions in ARDS remain limited. ARDS is driven by an acute severe innate immune dysregulation, often characterized by inflammation, coagulation, and cell injury. How this inflammatory microenvironment influences MSC functions remains to be determined. Aim: To comparatively assess how the inflammatory environment present in ARDS lungs vs. the lung environment present in healthy volunteers alters MSC behaviors. Methods: Clinical grade human bone marrow-derived MSCs (hMSCs) were exposed to bronchoalveolar lavage fluid (BALF) samples obtained from ARDS patients or from healthy volunteers. Following exposure, hMSCs and their conditioned media were evaluated for a broad panel of relevant properties including viability, levels of expression of inflammatory cytokines, gene expression, cell surface HLA expression, and activation of coagulation and complement pathways. Results: Pro-inflammatory, pro-coagulant, and major histocompatibility complex (self recognition) related gene and protein expression was markedly up-regulated in hMSCs exposed ex vivo to BALF obtained from healthy volunteers. In contrast, these changes were less apparent and often opposite in hMSCs exposed to ARDS BALF samples. Conclusion: These data provide new insights into how hMSCs behave in healthy vs. inflamed lung environments strongly suggesting that the inflamed environment in ARDS induces hMSC responses potentially benefical for cell survival and actions. This further highlights the need to understand how different disease environments affect hMSC functions.
  •  
10.
  • Falcones, Bryan, et al. (författare)
  • hLMSC Secretome Affects Macrophage Activity Differentially Depending on Lung-Mimetic Environments
  • 2022
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesenchymal stromal cell (MSC)-based therapies for inflammatory diseases rely mainly on the paracrine ability to modulate the activity of macrophages. Despite recent advances, there is scarce information regarding changes of the secretome content attributed to physiomimetic cultures and, especially, how secretome content influence on macrophage activity for therapy. hLMSCs from human donors were cultured on devices developed in house that enabled lung-mimetic strain. hLMSC secretome was analyzed for typical cytokines, chemokines and growth factors. RNA was analyzed for the gene expression of CTGF and CYR61. Human monocytes were differentiated to macrophages and assessed for their phagocytic capacity and for M1/M2 subtypes by the analysis of typical cell surface markers in the presence of hLMSC secretome. CTGF and CYR61 displayed a marked reduction when cultured in lung-derived hydrogels (L-Hydrogels). The secretome showed that lung-derived scaffolds had a distinct secretion while there was a large overlap between L-Hydrogel and the conventionally (2D) cultured samples. Additionally, secretome from L-Scaffold showed an HGF increase, while IL-6 and TNF-α decreased in lung-mimetic environments. Similarly, phagocytosis decreased in a lung-mimetic environment. L-Scaffold showed a decrease of M1 population while stretch upregulated M2b subpopulations. In summary, mechanical features of the lung ECM and stretch orchestrate anti-inflammatory and immunosuppressive outcomes of hLMSCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (10)
forskningsöversikt (9)
bokkapitel (3)
samlingsverk (redaktörskap) (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Rolandsson Enes, Sar ... (18)
Westergren-Thorsson, ... (11)
Weiss, Daniel J. (8)
English, Karen (6)
Enes, Sara Rolandsso ... (5)
Dos Santos, Claudia ... (4)
visa fler...
Krasnodembskaya, Ann ... (3)
Rocco, Patricia R M (3)
Hampton, Thomas H (2)
Ashare, Alix (2)
McKenna, David H. (2)
Amiel, Eyal (2)
Barua, Jayita (2)
Liu, Kathleen D (2)
Matthay, Michael A. (2)
Stanton, Bruce A (2)
El-Merhie, Natalia (2)
Wagner, Darcy E (2)
Stegmayr, John (2)
Dellgren, Göran (2)
Bjermer, Leif (1)
Diamant, Zuzana (1)
Hallgren, Oskar (1)
Laffey, John G (1)
Abreu, Soraia Carval ... (1)
Hoffman, Evan (1)
Dearborn, Jacob (1)
Singh Sidhu, Karatat ... (1)
Matthews, Dwight E (1)
Mahon, Bernard Patri ... (1)
Santos, Claudia Dos (1)
Cruz, Fernanda F (1)
Chambers, Daniel C. (1)
Cramer, Robert A (1)
Wargo, Matthew J. (1)
Greene, Catherine M. (1)
Scheding, Stefan (1)
Tufvesson, Ellen (1)
Malmström, Anders (1)
Elowsson, Linda (1)
Almendros, Isaac (1)
Alsafadi, Hani N. (1)
Uhl, Franziska (1)
Bartel, Sabine (1)
Tykesson, Emil (1)
Weitoft, Maria (1)
Wigén, Jenny (1)
Artigas, A (1)
Aspberg, Anders (1)
Stenberg, Henning (1)
visa färre...
Lärosäte
Lunds universitet (23)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Naturvetenskap (1)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy