SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rolland Nicolas) srt2:(2018)"

Sökning: WFRF:(Rolland Nicolas) > (2018)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Franco Gonzalez, Felipe, et al. (författare)
  • Substrate-Dependent Morphology and Its Effect on Electrical Mobility of Doped Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 10:34, s. 29115-29126
  • Tidskriftsartikel (refereegranskat)abstract
    • Deposition dynamics, crystallization, molecular packing, and electronic mobility of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films are affected by the nature of the substrate. Computational microscopy has been carried out to reveal the morphology-substrate dependence for PEDOT thin films doped with molecular tosylate deposited on different substrates including graphite, Si3N4, silicon, and amorphous SiO2. It is shown that the substrate is instrumental in formation of the lamellar structure. PEDOT films on the ordered substrates (graphite, Si3N4, and silicon) exhibit preferential face-on orientation, with graphite showing the most ordered and pronounced face-on packing. In contrast, PEDOT on amorphous SiO2 exhibits the dominant edge-on orientation, except in the dry state where both packings are equally presented. The role of water and the porosity of the substrate in formation of the edge-on structure on SiO2 is outlined. On the basis of the calculated morphology, the multiscale calculations of the electronic transport and percolative analysis are performed outlining how the character of the substrate affects the electron mobility. It is demonstrated that good crystallinity (PEDOT on graphite substrate) and high content of edge-on (PEDOT on SiO2 substrate) are not enough to achieve the highest electrical in-plane mobility. Instead, the least ordered material with lower degree of the edge-on content (PEDOT on silicon substrate) provides the highest mobility because it exhibits an efficient network of pi-pi stacked chain extending throughout the entire sample.
  •  
2.
  • Katnagallu, Shyam, et al. (författare)
  • Impact of local electrostatic field rearrangement on field ionization
  • 2018
  • Ingår i: Journal of Physics D. - : IOP PUBLISHING LTD. - 0022-3727 .- 1361-6463. ; 51:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.
  •  
3.
  • Rolland, Nicolas, et al. (författare)
  • Understanding morphology-mobility dependence in PEDOT:Tos
  • 2018
  • Ingår i: Physical Review Materials. - : American Physical Society. - 2475-9953. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential of conjugated polymers to compete with inorganic materials in the field of semiconductor is conditional on fine-tuning of the charge carriers mobility. The latter is closely related to the material morphology, and various studies have shown that the bottleneck for charge transport is the connectivity between well-ordered crystallites, with a high degree of pi-pi stacking, dispersed into a disordered matrix. However, at this time there is a lack of theoretical descriptions accounting for this link between morphology and mobility, hindering the development of systematic material designs. Here we propose a computational model to predict charge carriers mobility in conducting polymer PEDOT depending on the physicochemical properties of the system. We start by calculating the morphology using molecular dynamics simulations. Based on the calculated morphology we perform quantum mechanical calculation of the transfer integrals between states in polymer chains and calculate corresponding hopping rates using the Miller-Abrahams formalism. We then construct a transport resistive network, calculate the mobility using a mean-field approach, and analyze the calculated mobility in terms of transfer integrals distributions and percolation thresholds. Our results provide theoretical support for the recent study [Noriega et al., Nat Mater 12, 1038 (2013)] explaining why the mobility in polymers rapidly increases as the chain length is increased and then saturates for sufficiently long chains. Our study also provides the answer to the long-standing question whether the enhancement of the crystallinity is the key to designing high-mobility polymers. We demonstrate, that it is the effective pi-pi stacking, not the long-range order that is essential for the material design for the enhanced electrical performance. This generic model can compare the mobility of a polymer thin film with different solvent contents, solvent additives, dopant species or polymer characteristics, providing a general framework to design new high mobility conjugated polymer materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy