SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rolland Nicolas) srt2:(2021)"

Sökning: WFRF:(Rolland Nicolas) > (2021)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bousquet, Jean, et al. (författare)
  • ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice
  • 2021
  • Ingår i: Allergy. European Journal of Allergy and Clinical Immunology. - : John Wiley & Sons. - 0105-4538 .- 1398-9995. ; 76:1, s. 168-190
  • Forskningsöversikt (refereegranskat)abstract
    • Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.
  •  
2.
  • Ghosh, Sarbani, et al. (författare)
  • Electronic structure, optical properties, morphology and charge transport in naphthalenediimide (NDI)-based n-type copolymer with altered pi-conjugation: A theoretical perspective
  • 2021
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 118:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Future developments of the thermoelectric technologies based on conducting polymer require to find n-type polymers with performance, especially electrical conductivity, comparable to the one of the state-of-the-art p-type conducting polymers. In this regard, naphthalenediimide based donor-acceptor copolymers have appeared as promising candidates. The backbone of the polymer can be engineered to control the electronic structure and the morphology of the chains in order to maximize both the charge carrier density and mobility. However, at the moment a complete theoretical insight from electronic structures to charge transport is missing. Here, we use a multiscale theoretical framework to study naphthalenediimide based donor-acceptor copolymers where the donor pi-conjugated dithienylvinylene moieties are replaced by pi non-conjugated dithienylethane in various amounts, and we show that this approach is in position to rationalize many experimental data. The resulting gradual change in electronic structure of polymer chains is investigated by the density functional theory and correlated with experimental absorption spectra. The morphology of a polymer film is studied by means of molecular dynamics simulations, showing that an extended network of inter-chain pi-pi stacking is preserved upon introduction of non-conjugated units in the polymer backbone. This finding is supported by a subsequent calculation of the charge transport, which shows only a moderate impact of the morphology on the mobility, while the experimental data can be retrieved by considering the effect of the pi non-conjugated moiety on the electronic structure. Such a multiscale description of conducting polymers paves the way toward fully theoretical design of future high performances materials.
  •  
3.
  • Klaes, Benjamin, et al. (författare)
  • A model to predict image formation in the three-dimensional field ion microscope?
  • 2021
  • Ingår i: Computer Physics Communications. - : ELSEVIER. - 0010-4655 .- 1879-2944. ; 260
  • Tidskriftsartikel (refereegranskat)abstract
    • Field ion microscopy (FIM) was the first technique to image individual atoms on the surface of a material. By a careful control of the field evaporation of surface atoms, the bulk of the material is exposed, and, through digital processing of a sequence of micrographs, an atomically-resolved threedimensional reconstruction can be achieved. 3DFIM is particularly suited to the direct observation of crystalline defects that underpin the physical properties of materials: vacancies and vacancy clusters, interstitials, dislocations, or grain boundaries. Yet, further developments of 3DFIM are necessary to turn it into a routines technique. Here, we introduce first a protocol for 3DFIM image processing and subsequent tomographic reconstruction. Second, we propose a numerical model enabling simulation of the FIM imaging process. The model combines the meshless algorithm for field evaporation proposed by Rolland et al. (Robin-Rolland Model, or RRM) with fundamental aspects of the field ionization process of the gas image involved in FIM. The proposed model enables the simulation of imaging artefacts that are induced by non-regular field evaporation and by the disturbed electric field distribution near atomic defects. Our model enables more precise interpretation of 3DFIM characterization of structural defects. (C) 2020 Elsevier B.V. All rights reserved.
  •  
4.
  • Zozoulenko, Igor, et al. (författare)
  • Electronic, Optical, Morphological, Transport, and Electrochemical Properties of PEDOT: A Theoretical Perspective
  • 2021
  • Ingår i: Macromolecules. - : AMER CHEMICAL SOC. - 0024-9297 .- 1520-5835. ; 54:13, s. 5915-5934
  • Tidskriftsartikel (refereegranskat)abstract
    • Among all conducting polymers, PEDOT or poly(3,4-ethylenedioxythiophene) has a special place within the field of organic electronics due to its outstanding conductivity, stability, and processability. Since PEDOT was first synthesized in the late 1980s, a massive amount of knowledge has been accumulated about its morphological, structural, electrical, and optical properties, along with its applications in various devices. Notably, however, is that the vast majority of the reports in the field are purely experimental, without any theoretical support from simulation and modeling. In many other fields of material science, molecular modeling has already become a standard tool for guiding the experimental work. For PEDOT, the lack of the theoretical understanding of many important aspects of the material properties and device functionality leads to misconceptions and controversial issues hindering the progress in the field. The purpose of this Perspective is to fill the knowledge gaps and to present the current state-of-the art of the theoretical understanding of PEDOT. As theoretical understanding is essential to correctly interpretate experimental results and for the design of materials and devices with better performance, this Perspective targets equally experimental and theoretical communities working on PEDOT and related materials. We also hope that this Perspective will attract further attention of the computational community, which would help to bring the theoretical understanding of PEDOT to the levels already achieved in many other fields of material science.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy