SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ronquist Fredrik 1962 ) srt2:(2023)"

Sökning: WFRF:(Ronquist Fredrik 1962 ) > (2023)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Iwaszkiewicz-Eggebrecht, Elzbieta, et al. (författare)
  • FAVIS : Fast and versatile protocol for nondestructive metabarcoding of bulk insect samples
  • 2023
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 18:7, s. e0286272-
  • Tidskriftsartikel (refereegranskat)abstract
    • Insects are diverse and sustain essential ecosystem functions, yet remain understudied. Recent reports about declines in insect abundance and diversity have highlighted a pressing need for comprehensive large-scale monitoring. Metabarcoding (high-throughput bulk sequencing of marker gene amplicons) offers a cost-effective and relatively fast method for characterizing insect community samples. However, the methodology applied varies greatly among studies, thus complicating the design of large-scale and repeatable monitoring schemes. Here we describe a non-destructive metabarcoding protocol that is optimized for high-throughput processing of Malaise trap samples and other bulk insect samples. The protocol details the process from obtaining bulk samples up to submitting libraries for sequencing. It is divided into four sections: 1) Laboratory workspace preparation; 2) Sample processing-decanting ethanol, measuring the wet-weight biomass and the concentration of the preservative ethanol, performing non-destructive lysis and preserving the insect material for future work; 3) DNA extraction and purification; and 4) Library preparation and sequencing. The protocol relies on readily available reagents and materials. For steps that require expensive infrastructure, such as the DNA purification robots, we suggest alternative low-cost solutions. The use of this protocol yields a comprehensive assessment of the number of species present in a given sample, their relative read abundances and the overall insect biomass. To date, we have successfully applied the protocol to more than 7000 Malaise trap samples obtained from Sweden and Madagascar. We demonstrate the data yield from the protocol using a small subset of these samples.
  •  
2.
  •  
3.
  • Lundén, Daniel, 1993-, et al. (författare)
  • Automatic Alignment in Higher-Order Probabilistic Programming Languages
  • 2023
  • Ingår i: Programming Languages and Systems. ; , s. 535-563
  • Konferensbidrag (refereegranskat)abstract
    • Probabilistic Programming Languages (PPLs) allow users to encode statistical inference problems and automatically apply an inference algorithm to solve them. Popular inference algorithms for PPLs, such as sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC), are built around checkpoints—relevant events for the inference algorithm during the execution of a probabilistic program. Deciding the location of checkpoints is, in current PPLs, not done optimally. To solve this problem, we present a static analysis technique that automatically determines checkpoints in programs, relieving PPL users of this task. The analysis identifies a set of checkpoints that execute in the same order in every program run—they are aligned. We formalize alignment, prove the correctness of the analysis, and implement the analysis as part of the higher-order functional PPL Miking CorePPL. By utilizing the alignment analysis, we design two novel inference algorithm variants: aligned SMC and aligned lightweight MCMC. We show, through real-world experiments, that they significantly improve inference execution time and accuracy compared to standard PPL versions of SMC and MCMC.
  •  
4.
  • Prager, Maria, et al. (författare)
  • ASV portal : an interface to DNA-based biodiversity data in the Living Atlas
  • 2023
  • Ingår i: BMC Bioinformatics. - : BioMed Central (BMC). - 1471-2105. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Living Atlas is an open source platform used to collect, visualise and analyse biodiversity data from multiple sources, and serves as the national biodiversity data hub in many countries. Although powerful, the Living Atlas has had limited func-tionality for species occurrence data derived from DNA sequences. As a step toward integrating this fast-growing data source into the platform, we developed the Ampli-con Sequence Variant (ASV) portal: a web interface to sequence-based biodiversity observations in the Living Atlas.Results: The ASV portal allows data providers to submit denoised metabarcoding output to the Living Atlas platform via an intermediary ASV database. It also enables users to search for existing ASVs and associated Living Atlas records using the Basic Local Alignment Search Tool, or via filters on taxonomy and sequencing details. The ASV portal is a Python-Flask/jQuery web interface, implemented as a multi-container docker service, and is an integral part of the Swedish Biodiversity Data Infrastructure. Conclusion: The ASV portal is a web interface that effectively integrates biodiversity data derived from DNA sequences into the Living Atlas platform.
  •  
5.
  •  
6.
  • Truszkowski, Jakub, et al. (författare)
  • Online tree expansion could help solve the problem of scalability in Bayesian phylogenetics
  • 2023
  • Ingår i: Systematic Biology. - : Oxford University Press (OUP). - 1063-5157 .- 1076-836X. ; 72:5, s. 1199-1206
  • Tidskriftsartikel (refereegranskat)abstract
    • Bayesian phylogenetics is now facing a critical point. Over the last 20 years, Bayesian methods have reshaped phylogenetic inference and gained widespread popularity due to their high accuracy, the ability to quantify the uncertainty of inferences and the possibility of accommodating multiple aspects of evolutionary processes in the models that are used. Unfortunately, Bayesian methods are computationally expensive, and typical applications involve at most a few hundred sequences. This is problematic in the age of rapidly expanding genomic data and increasing scope of evolutionary analyses, forcing researchers to resort to less accurate but faster methods, such as maximum parsimony and maximum likelihood. Does this spell doom for Bayesian methods? Not necessarily. Here, we discuss some recently proposed approaches that could help scale up Bayesian analyses of evolutionary problems considerably. We focus on two particular aspects: online phylogenetics, where new data sequences are added to existing analyses, and alternatives to Markov chain Monte Carlo (MCMC) for scalable Bayesian inference. We identify 5 specific challenges and discuss how they might be overcome. We believe that online phylogenetic approaches and Sequential Monte Carlo hold great promise and could potentially speed up tree inference by orders of magnitude. We call for collaborative efforts to speed up the development of methods for real-time tree expansion through online phylogenetics.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy