SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rosen LU) srt2:(2020-2024)"

Search: WFRF:(Rosen LU) > (2020-2024)

  • Result 1-10 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Vogel, Jacob W., et al. (author)
  • Four distinct trajectories of tau deposition identified in Alzheimer’s disease
  • 2021
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:5, s. 871-881
  • Journal article (peer-reviewed)abstract
    • Alzheimer’s disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These ‘subtypes’ were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of ‘typical AD’ and a revisiting of tau pathological staging. © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
2.
  • Bakhit, Babak, 1983-, et al. (author)
  • Dense Ti0.67Hf0.33B1.7 thin films grown by hybrid HfB2-HiPIMS/TiB2-DCMS co-sputtering without external heating
  • 2021
  • In: Vacuum. - : Elsevier. - 0042-207X .- 1879-2715. ; 186
  • Journal article (peer-reviewed)abstract
    • There is a need for developing synthesis techniques that allow the growth of high-quality functional films at low substrate temperatures to minimize energy consumption and enable coating temperature-sensitive substrates. A typical shortcoming of conventional low-temperature growth strategies is insufficient atomic mobility, which leads to porous microstructures with impurity incorporation due to atmosphere exposure, and, in turn, poor mechanical properties. Here, we report the synthesis of dense Ti0.67Hf0.33B1.7 thin films with a hardness of ∼41.0 GPa grown without external heating (substrate temperature below ∼100 °C) by hybrid high-power impulse and dc magnetron co-sputtering (HfB2-HiPIMS/TiB2-DCMS) in pure Ar on Al2O3(0001) substrates. A substrate bias potential of −300 V is synchronized to the target-ion-rich portion of each HiPIMS pulse. The limited atomic mobility inherent to such desired low-temperature deposition is compensated for by heavy-mass ion (Hf+) irradiation promoting the growth of dense Ti0.67Hf0.33B1.7.
  •  
3.
  • Bakhit, Babak, 1983-, et al. (author)
  • Multifunctional ZrB2-rich Zr1-xCrxBy thin films with enhanced mechanical, oxidation, and corrosion properties
  • 2021
  • In: Vacuum. - : Elsevier BV. - 0042-207X .- 1879-2715. ; 185
  • Journal article (peer-reviewed)abstract
    • Refractory transition-metal (TM) diborides have high melting points, excellent hardness, and good  chemical  stability.  However, these properties are not sufficient for applications involving extreme  environments that require high mechanical strength as well as oxidation and corrosion resistance. Here, we study the effect of Cr addition on the properties of ZrB2-rich Zr1-xCrxBy thin films grown by hybrid high-power impulse and dc magnetron co-sputtering (Cr-HiPIMS/ZrB2-DCMS) with a 100-V Cr-metal-ion synchronized potential. Cr metal fraction, x = Cr/(Zr+Cr), is increased from 0.23 to 0.44 by decreasing the power Pzrb2 applied to the DCMS ZrB2 target from 4000 to 2000 W, while the average power, pulse width, and frequency applied to the HiPIMS Cr target are maintained constant. In addition, y decreases from 2.18 to 1.11 as a function of Pzrb2, as a result of supplying Cr to the growing film and preferential B resputtering caused by the pulsed Cr-ion flux. ZrB2.18, Zr0.77Cr0.23B1.52, Zr0.71Cr0.29B1.42, and Zr0.68Cr0.32B1.38 2 films have hexagonal AlB2 crystal structure with a columnar nanostructure, while Zr0.64Cr0.36B1.30 and Zr0.56Cr0.44B1.11 are  amorphous. All films show hardness above 30 GPa. Zr0.56Cr0.44B1.11 alloys exhibit much better toughness, wear, oxidation, and corrosion resistance than ZrB2.18. This combination of properties   makes Zr0.56Cr0.44B1.11 ideal candidates for numerous strategic applications.
  •  
4.
  •  
5.
  • Dahlqvist, Martin, et al. (author)
  • Out-Of-Plane Ordered Laminate Borides and Their 2D Ti-Based Derivative from Chemical Exfoliation
  • 2021
  • In: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 33:38
  • Journal article (peer-reviewed)abstract
    • Exploratory theoretical predictions in uncharted structural and compositional space are integral to materials discoveries. Inspired by M5SiB2 (T2) phases, the finding of a family of laminated quaternary metal borides, M M-4 SiB2, with out-of-plane chemical order is reported here. 11 chemically ordered phases as well as 40 solid solutions, introducing four elements previously not observed in these borides are predicted. The predictions are experimentally verified for Ti4MoSiB2, establishing Ti as part of the T2 boride compositional space. Chemical exfoliation of Ti4MoSiB2 and select removal of Si and MoB2 sub-layers is validated by derivation of a 2D material, TiOxCly, of high yield and in the form of delaminated sheets. These sheets have an experimentally determined direct band gap of approximate to 4.1 eV, and display characteristics suitable for supercapacitor applications. The results take the concept of chemical exfoliation beyond currently available 2D materials, and expands the envelope of 3D and 2D candidates, and their applications.
  •  
6.
  • Etman, Ahmed, et al. (author)
  • Computationally Driven Discovery of Quaternary Tantalum-Based MAB-Phases: Ta4M & DPRIME;SiB2 (M & DPRIME; = V, Cr, or Mo): Synthesis, Characterization, and Elastic Properties
  • 2023
  • In: Crystal Growth & Design. - : AMER CHEMICAL SOC. - 1528-7483 .- 1528-7505. ; 23:6, s. 4442-4447
  • Journal article (peer-reviewed)abstract
    • Out-of-plane chemically ordered transitionmetal boride(o-MAB) phases, Ta4M & DPRIME;SiB2 (M & DPRIME; = V, Cr), and a structurally equivalent disordered solidsolution MAB phase, Ta4MoSiB2, are synthesized.DFT calculations are used to examine the dynamic stability, elasticproperties, and electronic density states of the MAB phases. We report on the synthesis of computationally predictedout-of-planechemically ordered transition metal borides labeled o-MAB phases, Ta4M & DPRIME;SiB2 (M & DPRIME; =V, Cr), and a structurally equivalent disordered solid solution MABphase Ta4MoSiB2. The boride phases were preparedusing solid-state reaction sintering of the constituting elements.High-resolution scanning transmission electron microscopy along withRietveld refinement of the powder-X-ray diffraction patterns revealedthat the synthesized o-MAB phases Ta4CrSiB2 (98 wt % purity) and Ta4VSiB2 (81 wt% purity) possess chemical ordering with Ta preferentially residingin the 16l position and Cr and V in the 4c position, whereas Ta4MoSiB2 (46wt % purity) was concluded to form a disordered solid solution. Densityfunctional theory (DFT) calculations were used to investigate thedynamic stability, elastic properties, and electronic density statesfor the MAB phases, confirming the stability and suggesting the boridesbased on Cr and Mo to be stiffer than those based on V and Nb.
  •  
7.
  •  
8.
  • Griseri, Matteo, et al. (author)
  • Ta-based 413 and 211 MAX phase solid solutions with Hf and Nb
  • 2020
  • In: Journal of the European Ceramic Society. - : ELSEVIER SCI LTD. - 0955-2219 .- 1873-619X. ; 40:54, s. 1829-1838
  • Journal article (peer-reviewed)abstract
    • New bulk MAX phase-based ceramics were synthesized in the Ta-Hf-Al-C and Ta-Nb-Al-C systems. Specifically, (Ta1-x,Hf-x)(4)AlC3 and (Ta1-x,Nb-x)(4)AlC3 stoichiometries with x = 0.05, 0.1, 0.15, 0.2, 0.25 were targeted by reactive hot pressing of Ta2H, HfH2, NbH0.89, Al and C powder mixtures at 1550 degrees C in vacuum. The produced ceramics were characterized in terms of phase composition and microstructure by X-ray diffraction, scanning electron microscopy, electron probe microanalysis and scanning transmission electron microscopy. The investigation confirmed the existence of such M-site solid solutions with low solute concentrations, as predicted by first-principles calculations. These calculations also predicted a linear trend in lattice parameter evolution with increasing Hf concentration, in agreement with the experimental results. In order to increase the low phase purity of the produced ceramics, Sn was added to form (Ta1-x,Hf-x)(4)(Al-0.5,Sn-0.5)C-3 and (Ta1-x,Nb-x)(4)(Al-0.5,Sn-0.5)C-3 double solid solutions, thus resulting in a higher content of the 413 MAX phase compounds in the produced ceramics.
  •  
9.
  • Kashiwaya, Shun, et al. (author)
  • Formation of Ti2AuN from Au-Covered Ti2AlN Thin Films: A General Strategy to Thermally Induce Intercalation of Noble Metals into MAX Phases
  • 2020
  • In: Crystal Growth & Design. - : AMER CHEMICAL SOC. - 1528-7483 .- 1528-7505. ; 20:6, s. 4077-4081
  • Journal article (peer-reviewed)abstract
    • Thermally induced intercalation of noble metals into non-van der Waals ceramic compounds presents a method to produce a new class of layered materials. We recently demonstrated an exchange reaction of Au with A layers of MAX phase carbides with plentiful combinations of A and M elements. Here, we report the first substitution of Al with Au in a Ti2AlN MAX phase nitride at an elevated temperature without destroying the original layered structure. These results bolster the generalization of the Au intercalation for the A elements in MAX phases with diverse combinations of M, A, and X elements. Furthermore, we propose crucial factors to achieve the exchange reaction: there should be a chemical potential for the A element to dissolve in or react with noble metals to intercalate; the noble metals should be inert to the initial metal carbides/nitrides; and it is necessary to choose the reaction temperature that allows balanced interdiffusion of the noble metals and A elements.
  •  
10.
  • Kashiwaya, Shun, et al. (author)
  • Synthesis of goldene comprising single-atom layer gold
  • 2024
  • In: Nature Synthesis. - : Nature Publishing Group. - 2731-0582.
  • Journal article (peer-reviewed)abstract
    • The synthesis of monolayer gold has so far been limited to free-standingseveral-atoms-thick layers, or monolayers confned on or inside templates.Here we report the exfoliation of single-atom-thick gold achieved throughwet-chemically etching away Ti3C2 from nanolaminated Ti3AuC2, initiallyformed by substituting Si in Ti3SiC2 with Au. Ti3SiC2 is a renown MAX phase,where M is a transition metal, A is a group A element, and X is C or N. Ourdeveloped synthetic route is by a facile, scalable and hydrofuoric acid-freemethod. The two-dimensional layers are termed goldene. Goldene layerswith roughly 9% lattice contraction compared to bulk gold are observedby electron microscopy. While ab initio molecular dynamics simulationsshow that two-dimensional goldene is inherently stable, experiments showsome curling and agglomeration, which can be mitigated by surfactants.X-ray photoelectron spectroscopy reveals an Au 4f binding energy increaseof 0.88 eV. Prospects for preparing goldene from other non-van der WaalsAu-intercalated phases, including developing etching schemes,are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view